HEAL DSpace

Symmetric variational principles and modal methods in fluid-structure interaction problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kanarachos, A en
dc.contributor.author Antoniadis, I en
dc.date.accessioned 2014-03-01T01:07:16Z
dc.date.available 2014-03-01T01:07:16Z
dc.date.issued 1988 en
dc.identifier.issn 0022-460X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9901
dc.subject Fluid Structure Interaction en
dc.subject Variational Principle en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other MATHEMATICAL TECHNIQUES - Variational Techniques en
dc.subject.other FLUID-STRUCTURE INTERACTIONS en
dc.subject.other MODAL METHODS en
dc.subject.other SYMMETRIC VARIATIONAL PRINCIPLES en
dc.subject.other FLUID DYNAMICS en
dc.title Symmetric variational principles and modal methods in fluid-structure interaction problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0022-460X(88)80062-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0022-460X(88)80062-2 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract Two new symmetric variational principles for ""acoustoelastic"" fluid-structure interaction problems are first derived, with simultaneous use of three variables: the structural displacements and accelerations and the fluid pressure. Thus, a total of four three-field symmetric formulations is obtained. As is then shown, these formulations can be reduced to four two-field symmetric variational principles. Each of them can lead to a single-field ""limit case"" formulation, which is the formulation of the ""in vaccum"" structure or of the ""acoustic"" fluid plus a frequency independent term, expressing an ""added"" property in its general form: the ""incompressible"" fluid (""in vacuum"" structure plus ""added mass""), the ""hypercompressible"" fluid (""in vacuum"" structure plus ""added stiffness""), the ""hyperlight"" structure (""acoustic"" fluid plus ""added compressibility"") and the ""hyperflexible"" structure (""acoustic"" fluid plus ""added rigidity""). Combinations of the above ""limit case"" formulations are also of interest. The impact of these formulations on the construction of modal methods is significant. A large number of methods can be constructed, since the modes of the ""in vacuum"", of the ""acoustic"" and of the several ""limit case"" eigenproblems can provide basis functions for the structure and for the fluid variables, not only in the formulations of the full problem, but also in the ""limit case"" formulations. To demonstrate this, some new methods are proposed for the solution of the full and of the ""incompressible"" eigenproblems. Then, the methods based on the non-symmetric or on the three-field symmetric formulations are shown to have disadvantages, compared to the methods based on the two-field symmetric formulations. The examples provided demonstrate analytical expressions of ""added properties"" and verify the efficiency or the disadvantages of the model methods described. Finally, in the Appendices, the free surface conditions and the damping forces are incorporated in the various formulations and ""singular cases"" are treated (e.g., free bodies, ""wall bounded"" fluids). © 1988 Academic Press Limited. en
heal.publisher ACADEMIC PRESS LTD en
heal.journalName Journal of Sound and Vibration en
dc.identifier.doi 10.1016/S0022-460X(88)80062-2 en
dc.identifier.isi ISI:A1988M505800007 en
dc.identifier.volume 121 en
dc.identifier.issue 1 en
dc.identifier.spage 77 en
dc.identifier.epage 104 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής