dc.contributor.author |
Ladopoulos, EG |
en |
dc.date.accessioned |
2014-03-01T01:07:17Z |
|
dc.date.available |
2014-03-01T01:07:17Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9912 |
|
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Mathematical Techniques--Integral Equations |
en |
dc.subject.other |
Solids--Elasticity |
en |
dc.subject.other |
Isotropic Solid |
en |
dc.subject.other |
Quadrature Rules |
en |
dc.subject.other |
Fracture Mechanics |
en |
dc.title |
The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01174641 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01174641 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A new method is proposed, by using some special quadrature rules, for the numerical evaluation of the general type of finite-part singular integrals and integral equations with logarithmic singularities. In this way the system of such equations can be numerically solved by reduction to a system of linear equations. For this reduction, the singular integral equation is applied to a number of appropriately selected collocation points on the integration interval, and then a numerical integration rule is used for the approximation of the integrals in this equation. An application is given, to the determination of the intensity of the logarithmic singularity in a simple crack inside an infinite, isotropic solid. © 1988 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01174641 |
en |
dc.identifier.isi |
ISI:A1988R743600018 |
en |
dc.identifier.volume |
75 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
275 |
en |
dc.identifier.epage |
285 |
en |