dc.contributor.author |
Theodoropoulos, T |
en |
dc.contributor.author |
Bergeles, GC |
en |
dc.date.accessioned |
2014-03-01T01:07:21Z |
|
dc.date.available |
2014-03-01T01:07:21Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0021-9991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9944 |
|
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
A laplacian equation method for numerical generation of boundary-fitted 3D orthogonal grids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0021-9991(89)90049-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0021-9991(89)90049-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided. © 1989. |
en |
heal.publisher |
ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS |
en |
heal.journalName |
Journal of Computational Physics |
en |
dc.identifier.doi |
10.1016/0021-9991(89)90049-1 |
en |
dc.identifier.isi |
ISI:A1989AE73200002 |
en |
dc.identifier.volume |
82 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
269 |
en |
dc.identifier.epage |
288 |
en |