dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Bardzokas, D |
en |
dc.date.accessioned |
2014-03-01T01:07:22Z |
|
dc.date.available |
2014-03-01T01:07:22Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0020-1154 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9958 |
|
dc.subject |
Cauchy Integral |
en |
dc.subject |
Contact Stress |
en |
dc.subject |
Mechanical Property |
en |
dc.subject |
Mechanical Stress |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject |
Stress Field |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Thermal Effects |
en |
dc.subject.other |
Thermoelasticity |
en |
dc.subject.other |
Inclusions |
en |
dc.subject.other |
Stress Fields |
en |
dc.subject.other |
Stresses |
en |
dc.title |
Affinities in contact stresses between thermal and mechanical problems for the inclusion-matrix stress field |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00534311 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00534311 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
The problem of a plane inclusion where an oversized circular disk is contained inside a hole of an infinite plate was studied. Both the disk and plate are made of elastic and isotropic materials of different mechanical properties. The inclusion contains a certain number of thermal sources, and the contact between the inclusion and the plate is considered as thermally ideal. The complex potentials f (z), Φ0(z) and Ψ0(z) were derived under the form of Cauchy integrals which were used for defining the thermal and mechanical stress fields. For the particular case of the inclusion we have established a system of singular integral equations describing completely the problem. As an example we have examined the case of a circular inclusion where, under closed form, we have calculated the distribution of stresses and displacements, and, on the other hand, we have established an interesting analogy between the thermal and the purely mechanical problems. © 1989 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Ingenieur-Archiv |
en |
dc.identifier.doi |
10.1007/BF00534311 |
en |
dc.identifier.isi |
ISI:A1989AT24600005 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
445 |
en |
dc.identifier.epage |
455 |
en |