dc.contributor.author |
Therapos Constantine, P |
en |
dc.date.accessioned |
2014-03-01T01:07:23Z |
|
dc.date.available |
2014-03-01T01:07:23Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9970 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Mathematical Techniques--Eigenvalues and Eigenfunctions |
en |
dc.subject.other |
System Stability--Lyapunov Methods |
en |
dc.subject.other |
Balancing Transformations |
en |
dc.subject.other |
Lyapunov Matrix Equations |
en |
dc.subject.other |
Similarity Transformation |
en |
dc.subject.other |
Unstable Nonminimal Linear Systems |
en |
dc.subject.other |
Control Systems, Linear |
en |
dc.title |
Balancing transformations for unstable nonminimal linear systems. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/9.28023 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/9.28023 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
It is shown that an unstable nonminimal continuous (discrete) realization (A, B, C) can be transformed via a similarity transformation into a balanced one if and only if the product of the controllability, observability Gramians is similar to a real diagonal matrix Λ. If, in addition, the eigenvalues of A, say λ, satisfy the relation λi + λj ≠ 0(λiλj ≠ 1) then the matrix Λ will always be positive semidefinite, and a balanced realization with its minimal part in the internally balanced form can always be obtained. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/9.28023 |
en |
dc.identifier.isi |
ISI:A1989T791700011 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
455 |
en |
dc.identifier.epage |
457 |
en |