HEAL DSpace

Decomposition of strain energy density in fiber reinforced composites

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theocaris, PS en
dc.date.accessioned 2014-03-01T01:07:24Z
dc.date.available 2014-03-01T01:07:24Z
dc.date.issued 1989 en
dc.identifier.issn 0013-7944 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9986
dc.subject Fiber Reinforced Composite en
dc.subject Strain Energy Density en
dc.subject.classification Mechanics en
dc.subject.other Strain en
dc.subject.other Elliptic Paraboloid Failure Surface en
dc.subject.other Isotropic Transverse Plane en
dc.subject.other Strain Energy Density en
dc.subject.other Composite Materials en
dc.title Decomposition of strain energy density in fiber reinforced composites en
heal.type journalArticle en
heal.identifier.primary 10.1016/0013-7944(89)90084-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/0013-7944(89)90084-2 en
heal.language English en
heal.publicationDate 1989 en
heal.abstract The elliptic paraboloid failure surface (EPFS) has been shown to constitute an ideal criterion for yielding and failure of fiber reinforced materials, whose predictions coincide with extensive experimental evidence in various fiber laminates. Using this failure surface and limiting ourselves to transtropic materials describing all fiber reinforced composites we have shown that the total elastic strain-energy density can be divided into two independent parts, derived from orthogonal states of stress in such a manner that each component of stress in either part of the energy does not contribute to the energy belonging in the other part. Then, it was shown that while the orthogonal part of energy parallel to the hydrostatic axis of principal stress space is constant and independent of the orientation of the total stress vector, the terms parallel to the deviatoric plane are variable depending on the angle subtended by the stress vector and the principal diagonal plane containing the strong principal axis. Furthermore, whereas all terms of strain-energy density are created from couples of stresses and strains derived from each one of their components, only the term parallel to the deviatoric plane and normal to the principal diagonal plane is derived from collinear corresponding components. This term for transtropic materials expresses a strain energy density due exclusively to shear along the isotropic transverse plane of the material. © 1989. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Engineering Fracture Mechanics en
dc.identifier.doi 10.1016/0013-7944(89)90084-2 en
dc.identifier.isi ISI:A1989AB74900003 en
dc.identifier.volume 33 en
dc.identifier.issue 3 en
dc.identifier.spage 335 en
dc.identifier.epage 343 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής