HEAL DSpace

Direct and efficient solutions of integral equations for scattering from strips and slots

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsalamengas, JL en
dc.contributor.author Fikioris, JG en
dc.contributor.author Babili, BTh en
dc.date.accessioned 2014-03-01T01:07:25Z
dc.date.available 2014-03-01T01:07:25Z
dc.date.issued 1989 en
dc.identifier.issn 0021-8979 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9991
dc.subject.classification Physics, Applied en
dc.title Direct and efficient solutions of integral equations for scattering from strips and slots en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.343859 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.343859 en
heal.language English en
heal.publicationDate 1989 en
heal.abstract Singular integral or integro-differential equations (SIE or SIDE) are often used for the analytical formulation of two-dimensional boundary-value problems. The methods for solving them depend primarily on the complexity of their kernel and on the kind (first or second) of the SIE itself. First-kind SIEs with a Laplacian kernel are characteristic in electrostatics. A successful method for solving them is a regularization approach based on the transformation of the SIE to an equivalent Fredholm regular integral equation of the second kind. Well-known inversion formulas are essential to this approach. In electromagnetics, a Hankel-type kernel complicates matters considerably; inversion formulas and regularization techniques end up as cumbersome indirect procedures making necessary the recourse to a more direct method. Such a method is developed in this paper in combination with a very suitable expansion of the Bessel function, that multiplies the logarithmic singularity of the Hankel kernel, into a series of Chebyshev polynomials of the first or second kind. It is essentially a direct analytical approach that requires fewer expansion functions per wavelength than the method of moments and whose matrix elements are not numerical integrals of singular functions, but quite concise and rapidly convergent series expansions. The efficiency of the method is shown by applying it to scattering of E-polarized waves from a strip conductor right on the interface between two different dielectric half-spaces and of E- or H-polarized waves from a slot in the presence of a uniaxially gyrotropic half-space. Asymptotic expressions for the far-scattered field are given in all these cases and numerical results are plotted and compared with existing similar ones in certain special situations. en
heal.publisher AMER INST PHYSICS en
heal.journalName Journal of Applied Physics en
dc.identifier.doi 10.1063/1.343859 en
dc.identifier.isi ISI:A1989AA25600011 en
dc.identifier.volume 66 en
dc.identifier.issue 1 en
dc.identifier.spage 69 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής