HEAL DSpace

The integration of spatial context information in an experimental knowledge-based system and the supervised relaxation algorithm - Two successful approaches to improving SPOT-XS classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kontoes, CC en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T01:12:23Z
dc.date.available 2014-03-01T01:12:23Z
dc.date.issued 1996 en
dc.identifier.issn 0143-1161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12090
dc.subject Knowledge Based System en
dc.subject Spatial Context en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Algorithms en
dc.subject.other Feature extraction en
dc.subject.other Image processing en
dc.subject.other Image quality en
dc.subject.other Knowledge based systems en
dc.subject.other Land use en
dc.subject.other Logic programming en
dc.subject.other Parameter estimation en
dc.subject.other Probability en
dc.subject.other Dempster Shafer reasoning scheme en
dc.subject.other Spatial context information en
dc.subject.other Supervised relaxation algorithm en
dc.subject.other Remote sensing en
dc.subject.other classification en
dc.subject.other image classification en
dc.subject.other knowledge based system en
dc.subject.other land use class en
dc.subject.other SPOT-XS en
dc.subject.other supervised relaxation algorithm en
dc.subject.other texture en
dc.title The integration of spatial context information in an experimental knowledge-based system and the supervised relaxation algorithm - Two successful approaches to improving SPOT-XS classification en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431169608949132 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431169608949132 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract This paper describes two different methods which integrate contextual information in a classification process. This process aims to refine the map products given by the application of a common parametric classification algorithm. The first method is the well known Supervised Relaxation Algorithm, and makes use of the first classification, with additional contextual information. The contextual information is derived either from texture features or from other map products introducing additional information on the existing land use classes. The second method is a knowledge-based system, which makes use of image and geographical context rules. The probability figures, derived from the image classifier and the rule base are combined by the use of the Dempster-Shafer reasoning scheme. Experiments using satellite data from the Loir et Cher region (Central France), together with the appropriate ground truth data, have shown that both methods return improved classification products in terms of thematic and statistical accuracy, compared to using a parametric image classifier alone. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431169608949132 en
dc.identifier.isi ISI:A1996VL98100002 en
dc.identifier.volume 17 en
dc.identifier.issue 16 en
dc.identifier.spage 3093 en
dc.identifier.epage 3106 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής