dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Rigatos, GG |
en |
dc.date.accessioned |
2014-03-01T01:13:55Z |
|
dc.date.available |
2014-03-01T01:13:55Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0921-0296 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12790 |
|
dc.subject |
Adaptive robot control |
en |
dc.subject |
Counterpropagation network |
en |
dc.subject |
Feedforward neural network |
en |
dc.subject |
Fuzzy control |
en |
dc.subject |
Neural control |
en |
dc.subject |
Neurofuzzy control |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Adaptive control systems |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Fuzzy control |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Robot learning |
en |
dc.subject.other |
Torque control |
en |
dc.subject.other |
Counter propagation network-based fuzzy controllers (CPN-FC) |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
Neural and Neurofuzzy FELA Adaptive Robot Control Using Feedforward and Counterpropagation Networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1008077807191 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1008077807191 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper, the application of neural networks and neurofuzzy systems to the control of robotic manipulators is examined. Two main control structures are presented in a comparative manner. The first is a Counter Propagation Network-based Fuzzy Controller (CPN-FC) which is able to self-organize and correct on-line its rule base. The self-tuning capability of the fuzzy logic controller is attained by taking advantage of the structural equivalence between the fuzzy logic controller and a counterpropagation network. The second control structure is a more familiar neural adaptive controller based on a feedforward (MLP) network. The neural controller learns the inverse dynamics of the robot joints, and gradually eliminates the model uncertainties and disturbances. Both schemes cooperate with the computed torque control algorithm, and in that way the reduction of their complexity is achieved. The ability of adaptive fuzzy systems to compete with neural networks in difficult control problems is demonstrated. A sufficient set of numerical results is included. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Journal of Intelligent and Robotic Systems: Theory and Applications |
en |
dc.identifier.doi |
10.1023/A:1008077807191 |
en |
dc.identifier.isi |
ISI:000077318300011 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
2-4 |
en |
dc.identifier.spage |
291 |
en |
dc.identifier.epage |
330 |
en |