HEAL DSpace

Neural and Neurofuzzy FELA Adaptive Robot Control Using Feedforward and Counterpropagation Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Rigatos, GG en
dc.date.accessioned 2014-03-01T01:13:55Z
dc.date.available 2014-03-01T01:13:55Z
dc.date.issued 1998 en
dc.identifier.issn 0921-0296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12790
dc.subject Adaptive robot control en
dc.subject Counterpropagation network en
dc.subject Feedforward neural network en
dc.subject Fuzzy control en
dc.subject Neural control en
dc.subject Neurofuzzy control en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Robotics en
dc.subject.other Adaptive control systems en
dc.subject.other Algorithms en
dc.subject.other Backpropagation en
dc.subject.other Computational complexity en
dc.subject.other Feedforward neural networks en
dc.subject.other Fuzzy control en
dc.subject.other Fuzzy sets en
dc.subject.other Problem solving en
dc.subject.other Robot learning en
dc.subject.other Torque control en
dc.subject.other Counter propagation network-based fuzzy controllers (CPN-FC) en
dc.subject.other Manipulators en
dc.title Neural and Neurofuzzy FELA Adaptive Robot Control Using Feedforward and Counterpropagation Networks en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1008077807191 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1008077807191 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract In this paper, the application of neural networks and neurofuzzy systems to the control of robotic manipulators is examined. Two main control structures are presented in a comparative manner. The first is a Counter Propagation Network-based Fuzzy Controller (CPN-FC) which is able to self-organize and correct on-line its rule base. The self-tuning capability of the fuzzy logic controller is attained by taking advantage of the structural equivalence between the fuzzy logic controller and a counterpropagation network. The second control structure is a more familiar neural adaptive controller based on a feedforward (MLP) network. The neural controller learns the inverse dynamics of the robot joints, and gradually eliminates the model uncertainties and disturbances. Both schemes cooperate with the computed torque control algorithm, and in that way the reduction of their complexity is achieved. The ability of adaptive fuzzy systems to compete with neural networks in difficult control problems is demonstrated. A sufficient set of numerical results is included. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Journal of Intelligent and Robotic Systems: Theory and Applications en
dc.identifier.doi 10.1023/A:1008077807191 en
dc.identifier.isi ISI:000077318300011 en
dc.identifier.volume 23 en
dc.identifier.issue 2-4 en
dc.identifier.spage 291 en
dc.identifier.epage 330 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής