HEAL DSpace

A divide-and-conquer method for multi-net classifiers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Frosyniotis, D en
dc.contributor.author Stafylopatis, A en
dc.contributor.author Likas, A en
dc.date.accessioned 2014-03-01T01:18:31Z
dc.date.available 2014-03-01T01:18:31Z
dc.date.issued 2003 en
dc.identifier.issn 1433-7541 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15059
dc.subject Classifier combination en
dc.subject Classifier fusion en
dc.subject Clustering en
dc.subject Divide-and-conquer en
dc.subject Multiple classifier systems en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.title A divide-and-conquer method for multi-net classifiers en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10044-002-0174-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10044-002-0174-6 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Several researchers have shown that substantial improvements can be achieved in difficult pattern recognition problems by combining the outputs of multiple neural networks. In this work, we present and test a pattern classification multi-net system based on both supervised and unsupervised learning. Following the 'divide-and-conquer' framework, the input space is partitioned into overlapping subspaces and neural networks are subsequently used to solve the respective classification subtasks. Finally, the outputs of individual classifiers are appropriately combined to obtain the final classification decision. Two clustering methods have been applied for input space partitioning and two schemes have been considered for combining the outputs of the multiple classifiers. Experiments on well-known data sets indicate that the multi-net classification system exhibits promising performance compared with the case of single network training, both in terms of error rates and in terms of training speed (especially if the training of the classifiers is done in parallel). en
heal.publisher SPRINGER-VERLAG en
heal.journalName Pattern Analysis and Applications en
dc.identifier.doi 10.1007/s10044-002-0174-6 en
dc.identifier.isi ISI:000183382700004 en
dc.identifier.volume 6 en
dc.identifier.issue 1 en
dc.identifier.spage 32 en
dc.identifier.epage 40 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής