HEAL DSpace

On two types of convergence in the method of auxiliary sources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fikioris, G en
dc.date.accessioned 2014-03-01T01:24:48Z
dc.date.available 2014-03-01T01:24:48Z
dc.date.issued 2006 en
dc.identifier.issn 0018-926X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17444
dc.subject Convergence of numerical methods en
dc.subject Fredholm integral equations en
dc.subject Scattering en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Approximation theory en
dc.subject.other Convergence of numerical methods en
dc.subject.other Electromagnetic field measurement en
dc.subject.other Electromagnetic wave scattering en
dc.subject.other Integration en
dc.subject.other Problem solving en
dc.subject.other Fredholm integral equations en
dc.subject.other Method of auxiliary sources en
dc.subject.other Perfect electric conductor en
dc.subject.other Electromagnetic wave propagation en
dc.title On two types of convergence in the method of auxiliary sources en
heal.type journalArticle en
heal.identifier.primary 10.1109/TAP.2006.877171 en
heal.identifier.secondary http://dx.doi.org/10.1109/TAP.2006.877171 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The method of auxiliary sources (MAS) is often applied to problems involving an externally illuminated, smooth, perfect electric conductor (PEC). One seeks to approximately satisfy the boundary condition on the PEC surface using N auxiliary sources located inside the PEC surface. Usually, the underlying auxiliary surface is also smooth and closed. The currents on the auxiliary sources (""MAS currents"") are the initial unknowns; once they have been found, one can easily determine the field due to them (""MAS field"") at all points external to the auxiliary surface and, in particular, at all points external to the PEC scatterer. We show that, in the limit N → ∞, it is possible to have a convergent MAS field together with divergent MAS currents, and that this phenomenon is accompanied by an abrupt behavior of the limiting value of the MAS field. We show this possibility through an analytical study of a two-dimensional scattering problem involving a circular cylinder, in which MAS fields and currents can be determined explicitly. The analytical study proceeds from first principles; it involves fundamental electromagnetics and relatively simple mathematical manipulations. Numerical results supplement the analytical study and demonstrate the nature of the aforementioned divergence. Our study sheds light on other aspects of MAS; in particular, it establishes interesting similarities and differences between MAS and its ""continuous version,"" and reveals many similarities between MAS currents and numerical solutions of Hallén's integral equation with the approximate kernel. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Antennas and Propagation en
dc.identifier.doi 10.1109/TAP.2006.877171 en
dc.identifier.isi ISI:000238866000014 en
dc.identifier.volume 54 en
dc.identifier.issue 7 en
dc.identifier.spage 2022 en
dc.identifier.epage 2033 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής