dc.contributor.author |
Sargentis, Ch |
en |
dc.contributor.author |
Giannakopoulos, K |
en |
dc.contributor.author |
Travlos, A |
en |
dc.contributor.author |
Tsamakis, D |
en |
dc.date.accessioned |
2014-03-01T01:26:17Z |
|
dc.date.available |
2014-03-01T01:26:17Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0039-6028 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17980 |
|
dc.subject |
C-V |
en |
dc.subject |
Discharge mechanism |
en |
dc.subject |
Floating gate memory |
en |
dc.subject |
Metal nanoparticles |
en |
dc.subject |
Metallic nanoparticles |
en |
dc.subject |
Nanocrystal memory |
en |
dc.subject |
Nonvolatile memory |
en |
dc.subject |
Retention time |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.classification |
Physics, Condensed Matter |
en |
dc.subject.other |
Current voltage characteristics |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Electron guns |
en |
dc.subject.other |
MOSFET devices |
en |
dc.subject.other |
Nanocrystals |
en |
dc.subject.other |
Nanoparticles |
en |
dc.subject.other |
Nonvolatile storage |
en |
dc.subject.other |
Platinum |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Discharge mechanisms |
en |
dc.subject.other |
Electron gun evaporation |
en |
dc.subject.other |
Floating gate memory |
en |
dc.subject.other |
Nanocrystal memory |
en |
dc.subject.other |
Retention time |
en |
dc.subject.other |
MOS devices |
en |
dc.title |
Electrical characterization of MOS memory devices containing metallic nanoparticles and a high-k control oxide layer |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.susc.2006.11.064 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.susc.2006.11.064 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We study the electrical characteristics of a MOS structure in which Pt nanoparticles are embedded. This structure has a tunneling oxide of 3.5 nm in thickness (a SiO2 thermal oxide layer) on top of a Si wafer, and a control oxide of 27 nm (HfO2 layer deposited by electron gun evaporation). The nanoparticles are deposited on the SiO2, layer with electron gun evaporation, at room temperature. The electrical study of the structures demonstrates that the "write" process is initiated at low electric fields. This indicates that this type of memory structure can be very promising for the fabrication of high speed MOSFET memory devices with low power consumption. Our charge retention measurements also show promising results. (c) 2006 Elsevier B. V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Surface Science |
en |
dc.identifier.doi |
10.1016/j.susc.2006.11.064 |
en |
dc.identifier.isi |
ISI:000248030100068 |
en |
dc.identifier.volume |
601 |
en |
dc.identifier.issue |
13 |
en |
dc.identifier.spage |
2859 |
en |
dc.identifier.epage |
2863 |
en |