dc.contributor.author |
Maroulas, J |
en |
dc.contributor.author |
Barnett, S |
en |
dc.date.accessioned |
2014-03-01T01:37:55Z |
|
dc.date.available |
2014-03-01T01:37:55Z |
|
dc.date.issued |
1978 |
en |
dc.identifier.issn |
02724960 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21831 |
|
dc.title |
Some new results on the qualitative theory of generalized polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/imamat/22.1.53 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/imamat/22.1.53 |
en |
heal.publicationDate |
1978 |
en |
heal.abstract |
A polynomial is termed generalized when it is expressed in terms of an arbitrary orthogonal basis. A number of classical results on the qualitative analysis of polynomials in power form are extended to the generalized case. In particular, a Routh-type tabular array, and a Sylvester-type matrix are derived, for determining the greatest common divisor of two polynomials in generalized form. This leads to an analogue of the Routh-Hurwitz criteria for stability and zero location of a generalized polynomial. A number of related applications of the techniques are also discussed. © 1978, by Academic Press Inc. (London) Ltd. |
en |
heal.journalName |
IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) |
en |
dc.identifier.doi |
10.1093/imamat/22.1.53 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
53 |
en |
dc.identifier.epage |
70 |
en |