HEAL DSpace

Minkowski space Yang-Mills fields from solutions of equations in the three-dimensional Euclidean space

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyriakopoulos, E en
dc.date.accessioned 2014-03-01T01:38:14Z
dc.date.available 2014-03-01T01:38:14Z
dc.date.issued 1980 en
dc.identifier.issn 00222488 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21963
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-36749106267&partnerID=40&md5=313b168293c5919e0cb4b90c142760eb en
dc.title Minkowski space Yang-Mills fields from solutions of equations in the three-dimensional Euclidean space en
heal.type journalArticle en
heal.publicationDate 1980 en
heal.abstract Equations in the three-dimensional Euclidean space are derived by combining the Yang-Mills field equations with the conditions which are imposed on a Yang-Mills field in Bernreuther's method of constructing Yang-Mills fields in Minkowski space from Yang-Mills fields in Euclidean space. By a proper ansatz for the Yang-Mills fields these equations are reduced to a single differential equation. The differential equation is identical with merons' equation in Euclidean space if we consider solutions of the latter equation which are functions of the ratio t/ρ, where t is the Euclidean time and ρ is the three-dimensional radius. One such solution is the single meron solution in Euclidean space. Starting from this and applying the method we get the de Alfaro-Fubini-Furlan solution in Minkowski space. Then, a more general ansatz is considered, which leads to a system of three nonlinear differential equations. © 1981 American Institute of Physics. en
heal.journalName Journal of Mathematical Physics en
dc.identifier.volume 22 en
dc.identifier.issue 10 en
dc.identifier.spage 2279 en
dc.identifier.epage 2282 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής