dc.contributor.author |
Gelegenis, JJ |
en |
dc.contributor.author |
Lygerou, VA |
en |
dc.contributor.author |
Koumoutsos, NG |
en |
dc.date.accessioned |
2014-03-01T01:39:35Z |
|
dc.date.available |
2014-03-01T01:39:35Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
03756505 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22889 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024476295&partnerID=40&md5=030f9cf458dc83db47208b841653cfeb |
en |
dc.subject.other |
Flow of Fluids--Two Phase |
en |
dc.subject.other |
Geothermal Wells |
en |
dc.subject.other |
Mathematical Techniques--Finite Difference Method |
en |
dc.subject.other |
Geothermal Reservoirs |
en |
dc.subject.other |
Geophysics |
en |
dc.subject.other |
geothermal reservoir |
en |
dc.subject.other |
model equation solution |
en |
dc.title |
A numerical method for the solution of geothermal reservoir model equations |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
This paper presents a new three-dimensional geothermal reservoir simulator. The solution is based on finite difference techniques and uses a pressure semi-implicit, enthalpy explicit scheme. The equations are solved for each cell directly, while a new procedure is introduced for treating transitions from one to two phase conditions (and vice versa). A stability analysis is included proving the unconditional stability of the scheme. The model is applied to two cases for geothermal simulator testing. © 1989. |
en |
heal.journalName |
Geothermics |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
377 |
en |
dc.identifier.epage |
391 |
en |