dc.contributor.author |
Brockett, R |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:42:21Z |
|
dc.date.available |
2014-03-01T01:42:21Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23797 |
|
dc.subject |
Differential Operators |
en |
dc.subject |
Evolution Equation |
en |
dc.subject |
Morphological Operation |
en |
dc.subject |
Nonlinear Partial Differential Equation |
en |
dc.subject |
Rate of Change |
en |
dc.subject |
Signal Analysis |
en |
dc.subject |
Signal Processing |
en |
dc.title |
Evolution equations for continuous-scale morphological filtering |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/78.340774 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/78.340774 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Multiscale signal analysis has emerged as a useful framework for many computer vision and signal processing tasks. Morphological filters can be used to develop nonlinear multiscale operations that have certain advantages over linear multiscale approaches in that they preserve important signal features such as edges. The authors discuss several nonlinear partial differential equations that model the scale evolution associated with |
en |
heal.journalName |
IEEE Transactions on Signal Processing |
en |
dc.identifier.doi |
10.1109/78.340774 |
en |