HEAL DSpace

A neuro-fuzzy computational approach for multicriteria optimisation of the quality of espresso coffee by pod based on the extraction time, temperature and blend

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Russo, L en
dc.contributor.author Albanese, D en
dc.contributor.author Siettos, CI en
dc.contributor.author di Matteo, M en
dc.contributor.author Crescitelli, S en
dc.date.accessioned 2014-03-01T02:07:23Z
dc.date.available 2014-03-01T02:07:23Z
dc.date.issued 2012 en
dc.identifier.issn 09505423 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29552
dc.subject.other Computational approach en
dc.subject.other Design variables en
dc.subject.other Extraction time en
dc.subject.other Food science and technology en
dc.subject.other Global optimum en
dc.subject.other Multi-criteria en
dc.subject.other Neuro-Fuzzy en
dc.subject.other Neuro-fuzzy modelling en
dc.subject.other Optimisations en
dc.subject.other Parameter values en
dc.subject.other Sensory profiles en
dc.subject.other Sensory qualities en
dc.subject.other Soft computing methods en
dc.subject.other Simulated annealing en
dc.subject.other Soft computing en
dc.subject.other Coffee en
dc.title A neuro-fuzzy computational approach for multicriteria optimisation of the quality of espresso coffee by pod based on the extraction time, temperature and blend en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1365-2621.2011.02916.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1365-2621.2011.02916.x en
heal.publicationDate 2012 en
heal.abstract We demonstrate how soft computing methods can be exploited to solve multicriteria quality optimisation problems in food science and technology. In particular, we link neuro-fuzzy modelling techniques with simulated annealing to optimise/design the quality of espresso coffee by pod. The design variables are the extraction time (ranging from 10 to 30s), temperature (80-110°C) and blends (100% Arabica, 100% Robusta and Arabica Robusta: A20R80, A80R20 and A40R60); they are not the only variables that affect the sensory profile of a cup of espresso coffee, but have a strong impact on the sensory quality of the beverage. Based on the framework, we show that the particular problem is a nonlinear one. Hence, an espresso coffee characterised by a specific sensory profile can be extracted using different sets of parameter values. For example, the same sensory profile can be obtained using either pure Robusta extracted at 22s and 94°C or 90% Arabica and 10% Robusta extracted at 25s and 99°C. Yet, the global optimum with respect to the distance to the optimum sensorial values is obtained using 70% Arabica and 30% Robusta extracted at 15s around 93°C. © 2012 The Authors. International Journal of Food Science and Technology © 2012 Institute of Food Science and Technology. en
heal.journalName International Journal of Food Science and Technology en
dc.identifier.doi 10.1111/j.1365-2621.2011.02916.x en
dc.identifier.volume 47 en
dc.identifier.issue 4 en
dc.identifier.spage 837 en
dc.identifier.epage 846 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής