dc.contributor.author |
Russo, L |
en |
dc.contributor.author |
Albanese, D |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.contributor.author |
di Matteo, M |
en |
dc.contributor.author |
Crescitelli, S |
en |
dc.date.accessioned |
2014-03-01T02:07:23Z |
|
dc.date.available |
2014-03-01T02:07:23Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09505423 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29552 |
|
dc.subject.other |
Computational approach |
en |
dc.subject.other |
Design variables |
en |
dc.subject.other |
Extraction time |
en |
dc.subject.other |
Food science and technology |
en |
dc.subject.other |
Global optimum |
en |
dc.subject.other |
Multi-criteria |
en |
dc.subject.other |
Neuro-Fuzzy |
en |
dc.subject.other |
Neuro-fuzzy modelling |
en |
dc.subject.other |
Optimisations |
en |
dc.subject.other |
Parameter values |
en |
dc.subject.other |
Sensory profiles |
en |
dc.subject.other |
Sensory qualities |
en |
dc.subject.other |
Soft computing methods |
en |
dc.subject.other |
Simulated annealing |
en |
dc.subject.other |
Soft computing |
en |
dc.subject.other |
Coffee |
en |
dc.title |
A neuro-fuzzy computational approach for multicriteria optimisation of the quality of espresso coffee by pod based on the extraction time, temperature and blend |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1365-2621.2011.02916.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1365-2621.2011.02916.x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We demonstrate how soft computing methods can be exploited to solve multicriteria quality optimisation problems in food science and technology. In particular, we link neuro-fuzzy modelling techniques with simulated annealing to optimise/design the quality of espresso coffee by pod. The design variables are the extraction time (ranging from 10 to 30s), temperature (80-110°C) and blends (100% Arabica, 100% Robusta and Arabica Robusta: A20R80, A80R20 and A40R60); they are not the only variables that affect the sensory profile of a cup of espresso coffee, but have a strong impact on the sensory quality of the beverage. Based on the framework, we show that the particular problem is a nonlinear one. Hence, an espresso coffee characterised by a specific sensory profile can be extracted using different sets of parameter values. For example, the same sensory profile can be obtained using either pure Robusta extracted at 22s and 94°C or 90% Arabica and 10% Robusta extracted at 25s and 99°C. Yet, the global optimum with respect to the distance to the optimum sensorial values is obtained using 70% Arabica and 30% Robusta extracted at 15s around 93°C. © 2012 The Authors. International Journal of Food Science and Technology © 2012 Institute of Food Science and Technology. |
en |
heal.journalName |
International Journal of Food Science and Technology |
en |
dc.identifier.doi |
10.1111/j.1365-2621.2011.02916.x |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
837 |
en |
dc.identifier.epage |
846 |
en |