HEAL DSpace

Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The fuzzy C-means and Gustafson-Kessel methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Grekousis, G en
dc.contributor.author Thomas, H en
dc.date.accessioned 2014-03-01T02:08:33Z
dc.date.available 2014-03-01T02:08:33Z
dc.date.issued 2012 en
dc.identifier.issn 01436228 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29658
dc.subject Fuzzy C-means en
dc.subject Geodemographic segmentation en
dc.subject Gustfson-kessel algorithm en
dc.subject.other algorithm en
dc.subject.other census en
dc.subject.other cluster analysis en
dc.subject.other data set en
dc.subject.other experimental study en
dc.subject.other fuzzy mathematics en
dc.subject.other metropolitan area en
dc.subject.other segmentation en
dc.subject.other Athens [Attica] en
dc.subject.other Attica en
dc.subject.other Greece en
dc.title Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The fuzzy C-means and Gustafson-Kessel methods en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apgeog.2011.11.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apgeog.2011.11.004 en
heal.publicationDate 2012 en
heal.abstract Clustering techniques are frequently used to analyze census data and obtain meaningful large-scale groups. Geodemographic segmentation involves classifying small geographic areas e for example, block groups, census tracts, or neighborhoods - into relatively homogeneous segments. Most studies concerning geodemographic analysis and fuzzy logic employ the Fuzzy C-Means algorithm. In this paper, we compare two algorithms for fuzzy clustering in geodemographic analysis, and their structures, as well as their pros and cons, are analyzed. These are the Fuzzy C-Means algorithm and the GustafsoneKessel algorithm The main objective of this paper is to evaluate the performance of the Fuzzy C-Means and GustafsoneKessel algorithms in the clustering problem, under specific conditions. An experimental approach to this problem is adopted through the use of a real-world dataset describing 52 attributes of the 285 postal codes in the Athens metropolitan area. © 2011 Elsevier Ltd. en
heal.journalName Applied Geography en
dc.identifier.doi 10.1016/j.apgeog.2011.11.004 en
dc.identifier.volume 34 en
dc.identifier.spage 125 en
dc.identifier.epage 136 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής