dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Papalini, F |
en |
dc.date.accessioned |
2014-03-01T02:08:34Z |
|
dc.date.available |
2014-03-01T02:08:34Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00269255 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29665 |
|
dc.subject |
Critical point theory |
en |
dc.subject |
Equidiffusive reaction |
en |
dc.subject |
Logistic-type equation |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Positive and nodal solutions |
en |
dc.subject |
Superlinear nonlinearity |
en |
dc.subject |
Truncation techniques |
en |
dc.title |
Constant sign and nodal solutions for logistic-type equations with equidiffusive reaction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00605-010-0257-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00605-010-0257-1 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a logistic-type equation driven by the p-Laplace differential operator with an equidiffusive reaction term. Combining variational methods based on critical point theory together with truncation techniques and Morse theory, we show that when λ > λ1, the problem has extremal solutions of constant sign and when λ > λ2 it has also a nodal (sign-changing) solution. Here λ1 < λ2 are the first two eigenvalues of the negative Dirichlet p-Laplacian. In the semilinear case (i. e. p = 2) we produce two nodal solutions. © 2010 Springer-Verlag. |
en |
heal.journalName |
Monatshefte fur Mathematik |
en |
dc.identifier.doi |
10.1007/s00605-010-0257-1 |
en |
dc.identifier.volume |
165 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
91 |
en |
dc.identifier.epage |
116 |
en |