HEAL DSpace

Design of a matrix hydraulic turbine using a metamodel-assisted evolutionary algorithm with PCA-driven evolution operators

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyriacou, SA en
dc.contributor.author Weissenberger, S en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:08:36Z
dc.date.available 2014-03-01T02:08:36Z
dc.date.issued 2012 en
dc.identifier.issn 20403607 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29686
dc.subject Correlated design variables en
dc.subject EAs en
dc.subject Evolutionary algorithms en
dc.subject Hydraulic turbine design en
dc.subject Metamodelling en
dc.subject Optimisation en
dc.title Design of a matrix hydraulic turbine using a metamodel-assisted evolutionary algorithm with PCA-driven evolution operators en
heal.type journalArticle en
heal.identifier.primary 10.1504/IJMMNO.2012.044713 en
heal.identifier.secondary http://dx.doi.org/10.1504/IJMMNO.2012.044713 en
heal.publicationDate 2012 en
heal.abstract To overcome the excessive CPU cost of evolutionary algorithms (EAs) which make use of demanding evaluation models, metamodel-assisted EAs (MAEAs) have been devised and used in either single-objective (SOO) or multi-objective (MOO) problems. MAEAs are based on low-cost surrogate evaluation models that screen out non-promising individuals during the evolution and exclude them from the expensive, problem-specific evaluation. This paper proposes a new technique that further reduces the computational cost of MAEAs. This technique is based on the principal-component-analysis (PCA) of the non-dominated individuals (in MOO) within each generation, to identify dependences among the design variables and, through appropriate rotations, use this piece of information to efficiently 'drive' the application of the evolution operators. The proposed technique is used to perform the multi-operating point design of a matrix hydraulic turbine, where each evaluation is based on a 3D computational fluid dynamics (CFD) code; this is a highly constrained optimisation problem with many objectives, which is herein handled as a two-objective one. Some convincing mathematical function minimisation problems are also worked out using PCA-driven EAs; it is, thus, shown that the PCA-driven evolution operators can be used with or without metamodels. Copyright © 2012 Inderscience Enterprises Ltd. en
heal.journalName International Journal of Mathematical Modelling and Numerical Optimisation en
dc.identifier.doi 10.1504/IJMMNO.2012.044713 en
dc.identifier.volume 3 en
dc.identifier.issue 1-2 en
dc.identifier.spage 45 en
dc.identifier.epage 63 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής