dc.contributor.author |
Psarrakos, PJ |
en |
dc.date.accessioned |
2014-03-01T02:08:41Z |
|
dc.date.available |
2014-03-01T02:08:41Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00243795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29702 |
|
dc.subject |
Algebraic multiplicity |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Index of annihilation |
en |
dc.subject |
Matrix polynomial |
en |
dc.subject |
Perturbation |
en |
dc.subject |
Singular value |
en |
dc.subject |
Singular vector |
en |
dc.subject.other |
Algebraic multiplicity |
en |
dc.subject.other |
Eigen-value |
en |
dc.subject.other |
Index of annihilation |
en |
dc.subject.other |
Matrix polynomials |
en |
dc.subject.other |
Perturbation |
en |
dc.subject.other |
Singular values |
en |
dc.subject.other |
Singular vectors |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.title |
Distance bounds for prescribed multiple eigenvalues of matrix polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.laa.2012.01.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.laa.2012.01.003 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this paper,motivated by a problem posed byWilkinson, we study the coefficient perturbations of a (square) matrix polynomial to a matrix polynomial that has a prescribed eigenvalue of specified algebraic multiplicity and index of annihilation. For an n × n matrix polynomial P(λ) and a given scalarμ ∈ ℂ,we introduce two weighted spectral norm distances, εr(μ) and εr,k(μ), from P(λ) to the n × n matrix polynomials that have μ as an eigenvalue of algebraicmultiplicity at least r and to those that haveμas an eigenvalue of algebraicmultiplicity at least r and maximum Jordan chain length (exactly) k, respectively. Then we obtain a lower bound for εr,k(μ), and derive an upper bound for εr(μ) by constructing an associated perturbation of P(λ). © 2012 Elsevier Inc. All rights reserved. |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/j.laa.2012.01.003 |
en |
dc.identifier.volume |
436 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
4107 |
en |
dc.identifier.epage |
4119 |
en |