dc.contributor.author |
Mathioudakis, K |
en |
dc.contributor.author |
Romessis, C |
en |
dc.date.accessioned |
2014-03-01T02:42:55Z |
|
dc.date.available |
2014-03-01T02:42:55Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0954-4100 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31141 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-8644224949&partnerID=40&md5=372f765de7fbb46e380882eb5ab56016 |
en |
dc.subject |
Artificial intelligence |
en |
dc.subject |
Gas turbine diagnostics |
en |
dc.subject |
Probabilistic neural networks |
en |
dc.subject |
Probabilistic pattern recognition |
en |
dc.subject |
Sensor faults |
en |
dc.subject.classification |
Engineering, Aerospace |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Kalman filtering |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Probability distributions |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Turbomachinery |
en |
dc.subject.other |
Gas turbine diagnostics |
en |
dc.subject.other |
Probabilistic neural networks |
en |
dc.subject.other |
Probabilistic pattern recognition |
en |
dc.subject.other |
Sensor faults |
en |
dc.subject.other |
Jet engines |
en |
dc.title |
Probabilistic neural networks for validation of on-board jet engine data |
en |
heal.type |
conferenceItem |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A method is presented for identification of faults in the readings of sensors used to monitor the performance and the condition of jet engines. Probabilistic neural networks are used to detect the presence and identify the location and magnitude of faults (biases) in sensor readings. The faults can be detected on sets comprising a limited number of instruments, typical of those available for on-board monitoring of jet engines. An engine performance model is used to support the constitution of a network. Training information is built using the model to produce data for a comprehensive set of healthy and faulty situations. The network performance in detecting and quantifying sensor faults is validated on a large number of fault cases, also generated by a model, which are used for testing the network and cover a wide range of conditions that can be encountered in practice. An engine, representative of current large civil engine designs (large bypass, partially mixed turbofan), serves as the test vehicle for demonstration of the way the method is materialized. |
en |
heal.publisher |
PROFESSIONAL ENGINEERING PUBLISHING LTD |
en |
heal.journalName |
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering |
en |
dc.identifier.isi |
ISI:000221725300005 |
en |
dc.identifier.volume |
218 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
59 |
en |
dc.identifier.epage |
72 |
en |