HEAL DSpace

Nonlinear adaptive model predictive control based on self-correcting neural network models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandridis, A en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T02:43:26Z
dc.date.available 2014-03-01T02:43:26Z
dc.date.issued 2005 en
dc.identifier.issn 0001-1541 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31412
dc.subject Adaptive control en
dc.subject Digester control en
dc.subject Model predictive control en
dc.subject Nonlinear control en
dc.subject Radial basis function networks en
dc.subject.classification Engineering, Chemical en
dc.subject.other Adaptive control systems en
dc.subject.other Mathematical models en
dc.subject.other Perturbation techniques en
dc.subject.other Predictive control systems en
dc.subject.other Process control en
dc.subject.other Radial basis function networks en
dc.subject.other Digester control en
dc.subject.other Model predictive control en
dc.subject.other Nonlinear adaptive model en
dc.subject.other Nonlinear control en
dc.subject.other Nonlinear systems en
dc.subject.other adaptive control en
dc.subject.other neural network en
dc.subject.other predictive control en
dc.title Nonlinear adaptive model predictive control based on self-correcting neural network models en
heal.type conferenceItem en
heal.identifier.primary 10.1002/aic.10505 en
heal.identifier.secondary http://dx.doi.org/10.1002/aic.10505 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Two major issues in process control. are the nonlinearities and variations with time that are observed in the dynamics of the processes. In most cases these problems are confronted by robust linear controllers, which are frequently retuned to take into account changes in the operating region or the system dynamics. Obviously, the performance of these controllers is limited by the degree of nonlinearities and the frequency of process variations. In this paper we present a new model predictive control (MPC)framework that can deal with both these issues. The proposed methodology is based on a nonlinear dynamic radial basis function (RBF) model of the process that is able to correct itself as new information about the process dynamics becomes available. The adaptive training algorithm that is used is able to update both the structure and the parameters of the RBF model. The typical formulation of the on-line optimization problem is augmented by a persistent excitation condition that guarantees that enough perturbation is introduced to the system by the control moves. The proposed MPC framework is applied on the digester control problem and proves to be superior to other MPC configurations. (c) 2005 American Institute of Chemical Engineers. en
heal.publisher JOHN WILEY & SONS INC en
heal.journalName AIChE Journal en
dc.identifier.doi 10.1002/aic.10505 en
dc.identifier.isi ISI:000231237200016 en
dc.identifier.volume 51 en
dc.identifier.issue 9 en
dc.identifier.spage 2495 en
dc.identifier.epage 2506 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής