HEAL DSpace

Multiple hypothesis tracking for automated vehicle perception

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Thomaidis, G en
dc.contributor.author Spinoulas, L en
dc.contributor.author Lytrivis, P en
dc.contributor.author Ahrholdt, M en
dc.contributor.author Grubb, G en
dc.contributor.author Amditis, A en
dc.date.accessioned 2014-03-01T02:46:53Z
dc.date.available 2014-03-01T02:46:53Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32914
dc.subject Laser Scanner en
dc.subject Multiple Hypothesis Tracking en
dc.subject Target Tracking en
dc.subject Vision System en
dc.subject.other Advanced vehicle en
dc.subject.other Automated driving en
dc.subject.other Automated vehicles en
dc.subject.other Automotive sensors en
dc.subject.other Multi sensor en
dc.subject.other Multiple hypothesis tracking en
dc.subject.other Multitarget en
dc.subject.other Performance benefits en
dc.subject.other Real sensor data en
dc.subject.other Tracking performance en
dc.subject.other Transport safety en
dc.subject.other Vision systems en
dc.subject.other Automation en
dc.subject.other Intelligent vehicle highway systems en
dc.subject.other Sensors en
dc.subject.other Target tracking en
dc.subject.other Vehicles en
dc.title Multiple hypothesis tracking for automated vehicle perception en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IVS.2010.5548070 en
heal.identifier.secondary 5548070 en
heal.identifier.secondary http://dx.doi.org/10.1109/IVS.2010.5548070 en
heal.publicationDate 2010 en
heal.abstract The use of multiple hypothesis tracking has proven to provide significant performance benefits over the single hypothesis GNN or the PDA algorithm. Automotive sensors like radars, laser-scanners or vision systems are being integrated into vehicles for commercial or scientific purposes, in increasing numbers over the last years. As a result, there is profound literature on this area and several approaches have been proposed to the problem of multi-target, multi-sensor target tracking. The most advanced vehicle applications allow the use of highly or even fully automated driving. Of course, these applications require an accurate, robust and reliable perception output so that the vehicle can be driven autonomously. The HAVEit EU project investigates the application and validation of automated vehicles applications, technologies that are going to have great impact in transport safety and comfort. In this paper the MHT algorithm is applied to real sensor data, installed in Volvo Technology vehicle demonstrating Automated Queue Assistance. In conjunction with simulated scenarios, the benefits in tracking performance compared to conventional GNN tracking are presented. © 2010 IEEE. en
heal.journalName IEEE Intelligent Vehicles Symposium, Proceedings en
dc.identifier.doi 10.1109/IVS.2010.5548070 en
dc.identifier.spage 1222 en
dc.identifier.epage 1227 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής