HEAL DSpace

Combinatorial optimization for weighing matrices with the ordering messy genetic algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koukouvinos, C en
dc.contributor.author Simos, DE en
dc.date.accessioned 2014-03-01T02:47:18Z
dc.date.available 2014-03-01T02:47:18Z
dc.date.issued 2011 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33066
dc.subject competent metaheuristics en
dc.subject messy genetic algorithm en
dc.subject optimization en
dc.subject ordering messy genetic algorithm en
dc.subject Weighing matrices en
dc.subject.other Circulants en
dc.subject.other Combinatorial design en
dc.subject.other Combinatorial optimization problems en
dc.subject.other messy genetic algorithm en
dc.subject.other Messy genetic algorithms en
dc.subject.other Meta heuristics en
dc.subject.other ordering messy genetic algorithm en
dc.subject.other Permutation problems en
dc.subject.other Random keys en
dc.subject.other Structural pattern en
dc.subject.other Weighing matrices en
dc.subject.other Combinatorial optimization en
dc.subject.other Genes en
dc.subject.other Linear transformations en
dc.subject.other Optimization en
dc.subject.other Weighing en
dc.subject.other Genetic algorithms en
dc.title Combinatorial optimization for weighing matrices with the ordering messy genetic algorithm en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-20662-7_13 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-20662-7_13 en
heal.publicationDate 2011 en
heal.abstract In this paper, we demonstrate that the search for weighing matrices constructed from two circulants can be viewed as a permutation problem. To solve it a set of two competent genetic algorithms (CGAs) are used to locate common integers in two sorted arrays. The motivation to deal with the messy genetic algorithm (mGA) is given from the pioneering results of Goldberg, regarding the ability of the mGA to put tight genes together in a solution which points directly to structural patterns in weighing matrices. In order to take into advantage a recent formalism on the support of two sequences with zero autocorrelation we use an adaptation of the ordering messy GA (OmeGA) where we combine the fast mGA with random keys to represent permutations of the two sequences under investigation. This transformation of the weighing matrices problem to an instance of a combinatorial optimization problem seems to be promising since we illustrate that our framework is capable to solve open cases for weighing matrices as these are listed in the second edition of the Handbook of Combinatorial Designs. © 2011 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-20662-7_13 en
dc.identifier.volume 6630 LNCS en
dc.identifier.spage 148 en
dc.identifier.epage 156 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής