dc.contributor.author |
Xiang, L |
en |
dc.contributor.author |
Luo, J |
en |
dc.contributor.author |
Vasilakos, A |
en |
dc.date.accessioned |
2014-03-01T02:47:19Z |
|
dc.date.available |
2014-03-01T02:47:19Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33070 |
|
dc.subject |
Approximate Algorithm |
en |
dc.subject |
Data Aggregation |
en |
dc.subject |
Energy Consumption |
en |
dc.subject |
Energy Efficient |
en |
dc.subject |
Wireless Sensor Network |
en |
dc.subject.other |
Aggregation schemes |
en |
dc.subject.other |
Compressed sensing |
en |
dc.subject.other |
Data aggregation |
en |
dc.subject.other |
Data collection |
en |
dc.subject.other |
Energy efficient |
en |
dc.subject.other |
Greedy heuristics |
en |
dc.subject.other |
Joint routing |
en |
dc.subject.other |
Large-scale problem |
en |
dc.subject.other |
Mixed-Integer Programming |
en |
dc.subject.other |
Multi-hop networking |
en |
dc.subject.other |
Np-completeness |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Optimization problems |
en |
dc.subject.other |
Small scale |
en |
dc.subject.other |
Wireless communications |
en |
dc.subject.other |
Energy efficiency |
en |
dc.subject.other |
Energy utilization |
en |
dc.subject.other |
Integer programming |
en |
dc.subject.other |
MESH networking |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Wireless ad hoc networks |
en |
dc.subject.other |
Wireless telecommunication systems |
en |
dc.subject.other |
Wireless sensor networks |
en |
dc.title |
Compressed data aggregation for energy efficient wireless sensor networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/SAHCN.2011.5984932 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/SAHCN.2011.5984932 |
en |
heal.identifier.secondary |
5984932 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
As a burgeoning technique for signal processing, compressed sensing (CS) is being increasingly applied to wireless communications. However, little work is done to apply CS to multihop networking scenarios. In this paper, we investigate the application of CS to data collection in wireless sensor networks, and we aim at minimizing the network energy consumption through joint routing and compressed aggregation. We first characterize the optimal solution to this optimization problem, then we prove its NP-completeness. We further propose a mixed-integer programming formulation along with a greedy heuristic, from which both the optimal (for small scale problems) and the near-optimal (for large scale problems) aggregation trees are obtained. Our results validate the efficacy of the greedy heuristics, as well as the great improvement in energy efficiency through our joint routing and aggregation scheme. © 2011 IEEE. |
en |
heal.journalName |
2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2011 |
en |
dc.identifier.doi |
10.1109/SAHCN.2011.5984932 |
en |
dc.identifier.spage |
46 |
en |
dc.identifier.epage |
54 |
en |