dc.contributor.author |
Athanassoulis, GA |
en |
dc.contributor.author |
Belibassakis, KA |
en |
dc.date.accessioned |
2014-03-01T02:49:11Z |
|
dc.date.available |
2014-03-01T02:49:11Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34396 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-1842479607&partnerID=40&md5=494f51b168a3cc76c11a741c66f06504 |
en |
dc.subject |
Coupled-modes |
en |
dc.subject |
Nonlinear waves |
en |
dc.subject |
Numerical solution |
en |
dc.subject |
Variable bathymetry |
en |
dc.subject.other |
Bathymetry |
en |
dc.subject.other |
Boundary layers |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Incompressible flow |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Viscosity |
en |
dc.subject.other |
Wave propagation |
en |
dc.subject.other |
Coupled modes |
en |
dc.subject.other |
Nonlinear waves |
en |
dc.subject.other |
Numerical solutions |
en |
dc.subject.other |
Variable bathymetry |
en |
dc.subject.other |
Water waves |
en |
dc.title |
A Coupled-Mode, Fully-dispersive, Weakly-nonlinear Model for Water Waves over a General Bathymetry |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper a coupled-mode system of horizontal equations is derived with the aid of Luke's (1967) variational principle, which models the evolution of nonlinear water waves in intermediate depth over a general bathymetry. The vertical structure of the wave field is exactly represented by means of a local-mode series expansion of the wave potential, Athanassoulis & Belibassakis (2000). This series contains the usual propagating and evanescent modes, plus two additional modes, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The system fully accounts for the effects of non-linearity and dispersion. In the present work the fully nonlinear coupled-mode system is simplified keeping only up to second-order terms, and the derived weakly non-linear model is applied to water waves propagating over a fiat bottom and over an arbitrary bathymetry, in the time and in the frequency domain. |
en |
heal.journalName |
Proceedings of the International Offshore and Polar Engineering Conference |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.spage |
248 |
en |
dc.identifier.epage |
255 |
en |