HEAL DSpace

Fault diagnostics of industrial robots using support vector machines and discrete wavelet transforms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Datta, A en
dc.contributor.author Patel, S en
dc.contributor.author Mavroidis, C en
dc.contributor.author Antoniadis, I en
dc.contributor.author Krishnasamy, J en
dc.contributor.author Hosek, M en
dc.date.accessioned 2014-03-01T02:50:23Z
dc.date.available 2014-03-01T02:50:23Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35098
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-80054876623&partnerID=40&md5=c170b5dce5552f7d45d09e279056e541 en
dc.subject.other Operating conditions en
dc.subject.other Robotic systems en
dc.subject.other Semiconductor industry en
dc.subject.other Discrete wavelet transforms en
dc.subject.other Failure analysis en
dc.subject.other Feature extraction en
dc.subject.other Manipulators en
dc.subject.other Sensors en
dc.subject.other Support vector machines en
dc.subject.other Industrial robots en
dc.title Fault diagnostics of industrial robots using support vector machines and discrete wavelet transforms en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract In this paper we address the problem of fault diagnostics in industrial robots. The goal was to develop a method that automatically, accurately and in a generic way could identify and classify faults once they occur for any type of industrial robot used. Although a large number of diagnosis methods and relevant applications for industrial equipment already exist, the current research in the area of fault diagnosis of industrial robotic manipulators is rather poor, due to the large variability of faults, the unsteady and non-uniform operating conditions, the small amount of sensors used in industrial manipulators and the rather limited time records of the equipment. These restrictions present key challenges of the current research to be undertaken. In this paper we present a novel approach to perform fault diagnostics of industrial robotic systems using Support Vector Machines (SVM) and Discrete Wavelet Transform based feature extraction. Experimental results are obtained from an industrial manipulator used in the semi-conductor industry. Copyright © 2006 by ASME. en
heal.journalName American Society of Mechanical Engineers, Manufacturing Engineering Division, MED en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής