HEAL DSpace

Solution of the boundary layer problems for calculating the natural modes of riser-type slender structures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatjigeorgiou, IK en
dc.date.accessioned 2014-03-01T02:50:53Z
dc.date.available 2014-03-01T02:50:53Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35188
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33751340272&partnerID=40&md5=404a22096317ccdd66541783f33f36e2 en
dc.subject.other Approximation theory en
dc.subject.other Bending (deformation) en
dc.subject.other Boundary layers en
dc.subject.other Computation theory en
dc.subject.other Problem solving en
dc.subject.other Stiffness en
dc.subject.other Bending vibrations en
dc.subject.other Slender structures en
dc.subject.other Natural frequencies en
dc.title Solution of the boundary layer problems for calculating the natural modes of riser-type slender structures en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract The present work treats the problem of the calculation of the natural frequencies and the corresponding bending vibration modes of vertical slender structures. The originality of the study lies on fact that for the derivation of natural frequencies and the corresponding mode shapes, all physical properties that influence the bending vibration of the structure were considered including the aspect of the variation of tension. The resulting mathematical formulation incorporates all principal contributions such as the bending stiffness, the weight and the tension variation. The governing equation is treated using a perturbation approach. The application of this method results to the development of two boundary layer problems at the ends of the structure. These problems are treated properly using a boundary layer problem solution methodology in order to obtain asymptotic approximations to the shape of the vibrating riser-type structure. It should be noted that in this work the term 'boundary layer' is not connected with fluid flows but it is used to indicate the narrow region across which the dependent variable undergoes very rapid changes. Frequently these narrow regions adjoin the boundaries of the domain of intersect, especially when the small parameter multiplies the highest derivative. Copyright © 2006 by ASME. en
heal.journalName Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE en
dc.identifier.volume 2006 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής