On the stability of functional equations and a problem of Ulam

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Rassias, TM en
dc.date.accessioned 2014-03-01T11:44:28Z
dc.date.available 2014-03-01T11:44:28Z
dc.date.issued 2000 en
dc.identifier.issn 0167-8019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36961
dc.subject stability en
dc.subject functional equations en
dc.subject Cauchy difference en
dc.subject semigroup en
dc.subject inequalities en
dc.subject approximate en
dc.subject.classification Mathematics, Applied en
dc.subject.other RASSIAS STABILITY en
dc.subject.other NORMED SPACES en
dc.subject.other ALGEBRAS en
dc.subject.other CAUCHY en
dc.title On the stability of functional equations and a problem of Ulam en
heal.type other en
heal.identifier.primary 10.1023/A:1006499223572 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1006499223572 en
heal.language English en
heal.publicationDate 2000 en
heal.abstract In this paper, we study the stability of functional equations that has its origins with S. M. Ulam, who posed the fundamental problem 60 years ago and with D. H. Hyers, who gave the first significant partial solution in 1941. In particular, during the last two decades, the notion of stability of functional equations has evolved into an area of continuing research from both pure and applied viewpoints. Both classical results and current research are presented in a unified and self-contained fashion. In addition, related problems are investigated. Some of the applications deal with nonlinear equations in Banach spaces and complementarity theory. en
heal.publisher KLUWER ACADEMIC PUBL en
dc.identifier.doi 10.1023/A:1006499223572 en
dc.identifier.isi ISI:000089335500002 en
dc.identifier.volume 62 en
dc.identifier.issue 1 en
dc.identifier.spage 23 en
dc.identifier.epage 130 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record