dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T11:44:38Z |
|
dc.date.available |
2014-03-01T11:44:38Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37051 |
|
dc.subject |
Acoustics |
en |
dc.subject |
Blending-function interpolation |
en |
dc.subject |
DR/BEM |
en |
dc.subject |
Eigenvalue problem |
en |
dc.subject |
Multiquadratics |
en |
dc.subject |
RBF (radial basis functions) |
en |
dc.subject |
Thin plate spline |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Blending-function interpolation |
en |
dc.subject.other |
Dual reciprocity method (DRM) |
en |
dc.subject.other |
Eigenvalue problems |
en |
dc.subject.other |
Multiquadratics |
en |
dc.subject.other |
Radial basis functions (RBF) |
en |
dc.subject.other |
Thin plate splines |
en |
dc.subject.other |
Acoustics |
en |
dc.title |
On DR/BEM for eigenvalue analysis of 2-D acoustics |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s00466-004-0600-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-004-0600-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper discusses the efficiency of several DR/BEM formulations and other boundary techniques for the eigenvalue extraction of two-dimensional acoustic cavities. First, the paper shows that the well-known conical radial basis functions lead to extremely ill conditioning results in cases that the height of the cone is not properly chosen. Moreover, the accuracy of other known high-degree basis functions is tested. Second, the use of Pascal's triangle is proposed as a better approximation of the inertial forces at least for the case of rectangular domains. Using Gordon's blending-function formula, a systematic procedure is proposed for the selection of the proper monomials. Third, it is shown that the aforementioned functional set can be also used to establish an alternative boundary-type method where both inertial and static terms are treated in a consistent manner. The solution quality of these formulations is investigated by calculating the eigenvalues of a rectangular and a circular acoustic cavity where analytical solutions are known. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-004-0600-2 |
en |
dc.identifier.isi |
ISI:000225523900005 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
41 |
en |
dc.identifier.epage |
53 |
en |