dc.contributor.author |
Stiber, NA |
en |
dc.contributor.author |
Small, MJ |
en |
dc.contributor.author |
Pantazidou, M |
en |
dc.date.accessioned |
2014-03-01T11:44:38Z |
|
dc.date.available |
2014-03-01T11:44:38Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0272-4332 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37055 |
|
dc.subject |
Bayesian networks |
en |
dc.subject |
Combining multiple expert beliefs |
en |
dc.subject |
Environmental decision making |
en |
dc.subject |
Expert systems |
en |
dc.subject |
Reductive dechlorination |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Social Sciences, Mathematical Methods |
en |
dc.subject.other |
Chemicals |
en |
dc.subject.other |
Contamination |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Groundwater |
en |
dc.subject.other |
Hazardous materials |
en |
dc.subject.other |
Laws and legislation |
en |
dc.subject.other |
Bayesian Belief Network (BBN) |
en |
dc.subject.other |
Hazardous chemicals |
en |
dc.subject.other |
Trichloroethene (TCE) |
en |
dc.subject.other |
Risk assessment |
en |
dc.subject.other |
ground water |
en |
dc.subject.other |
Bayesian analysis |
en |
dc.subject.other |
cleanup |
en |
dc.subject.other |
groundwater pollution |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
Bayes theorem |
en |
dc.subject.other |
dangerous goods |
en |
dc.subject.other |
dechlorination |
en |
dc.subject.other |
expert system |
en |
dc.subject.other |
feasibility study |
en |
dc.subject.other |
hazard assessment |
en |
dc.subject.other |
mathematical analysis |
en |
dc.subject.other |
review |
en |
dc.subject.other |
risk assessment |
en |
dc.subject.other |
water contamination |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial Intelligence |
en |
dc.subject.other |
Bayes Theorem |
en |
dc.subject.other |
Chlorine |
en |
dc.subject.other |
Culture |
en |
dc.subject.other |
Decision Making |
en |
dc.subject.other |
Decision Making, Computer-Assisted |
en |
dc.subject.other |
Decision Support Techniques |
en |
dc.subject.other |
Demography |
en |
dc.subject.other |
Expert Systems |
en |
dc.subject.other |
Models, Statistical |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Observer Variation |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Risk |
en |
dc.subject.other |
Trichloroethylene |
en |
dc.title |
Site-specific updating and aggregation of bayesian belief network models for multiple experts |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1111/j.0272-4332.2004.00547.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.0272-4332.2004.00547.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A method for combining multiple expert opinions that are encoded in a Bayesian Belief Network (BBN) model is presented and applied to a problem involving the cleanup of hazardous chemicals at a site with contaminated groundwater. The method uses Bayes Rule to update each expert model with the observed evidence, then uses it again to compute posterior probability weights for each model. The weights reflect the consistency of each model with the observed evidence, allowing the aggregate model to be tailored to the particular conditions observed in the site-specific application of the risk model. The Bayesian update is easy to implement, since the likelihood for the set of evidence (observations for selected nodes of the BBN model) is readily computed by sequential execution of the BBN model. The method is demonstrated using a simple pedagogical example and subsequently applied to a groundwater contamination problem using an expert-knowledge BBN model. The BBN model in this application predicts the probability that reductive dechlorination of the contaminant trichlorethene (TCE) is occurring at a site - a critical step in the demonstration of the feasibility of monitored natural attenuation for site cleanup - given information on 14 measurable antecedent and descendant conditions. The predictions for the BBN models for 21 experts are weighted and aggregated using examples of hypothetical and actual site data. The method allows more weight for those expert models that are more reflective of the site conditions, and is shown to yield an aggregate prediction that differs from that of simple model averaging in a potentially significant manner. |
en |
heal.publisher |
BLACKWELL PUBLISHERS |
en |
heal.journalName |
Risk Analysis |
en |
dc.identifier.doi |
10.1111/j.0272-4332.2004.00547.x |
en |
dc.identifier.isi |
ISI:000226235800011 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1529 |
en |
dc.identifier.epage |
1538 |
en |