HEAL DSpace

Site-specific updating and aggregation of bayesian belief network models for multiple experts

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stiber, NA en
dc.contributor.author Small, MJ en
dc.contributor.author Pantazidou, M en
dc.date.accessioned 2014-03-01T11:44:38Z
dc.date.available 2014-03-01T11:44:38Z
dc.date.issued 2004 en
dc.identifier.issn 0272-4332 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/37055
dc.subject Bayesian networks en
dc.subject Combining multiple expert beliefs en
dc.subject Environmental decision making en
dc.subject Expert systems en
dc.subject Reductive dechlorination en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Social Sciences, Mathematical Methods en
dc.subject.other Chemicals en
dc.subject.other Contamination en
dc.subject.other Data reduction en
dc.subject.other Groundwater en
dc.subject.other Hazardous materials en
dc.subject.other Laws and legislation en
dc.subject.other Bayesian Belief Network (BBN) en
dc.subject.other Hazardous chemicals en
dc.subject.other Trichloroethene (TCE) en
dc.subject.other Risk assessment en
dc.subject.other ground water en
dc.subject.other Bayesian analysis en
dc.subject.other cleanup en
dc.subject.other groundwater pollution en
dc.subject.other methodology en
dc.subject.other Bayes theorem en
dc.subject.other dangerous goods en
dc.subject.other dechlorination en
dc.subject.other expert system en
dc.subject.other feasibility study en
dc.subject.other hazard assessment en
dc.subject.other mathematical analysis en
dc.subject.other review en
dc.subject.other risk assessment en
dc.subject.other water contamination en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Bayes Theorem en
dc.subject.other Chlorine en
dc.subject.other Culture en
dc.subject.other Decision Making en
dc.subject.other Decision Making, Computer-Assisted en
dc.subject.other Decision Support Techniques en
dc.subject.other Demography en
dc.subject.other Expert Systems en
dc.subject.other Models, Statistical en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Observer Variation en
dc.subject.other Probability en
dc.subject.other Risk en
dc.subject.other Trichloroethylene en
dc.title Site-specific updating and aggregation of bayesian belief network models for multiple experts en
heal.type other en
heal.identifier.primary 10.1111/j.0272-4332.2004.00547.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.0272-4332.2004.00547.x en
heal.language English en
heal.publicationDate 2004 en
heal.abstract A method for combining multiple expert opinions that are encoded in a Bayesian Belief Network (BBN) model is presented and applied to a problem involving the cleanup of hazardous chemicals at a site with contaminated groundwater. The method uses Bayes Rule to update each expert model with the observed evidence, then uses it again to compute posterior probability weights for each model. The weights reflect the consistency of each model with the observed evidence, allowing the aggregate model to be tailored to the particular conditions observed in the site-specific application of the risk model. The Bayesian update is easy to implement, since the likelihood for the set of evidence (observations for selected nodes of the BBN model) is readily computed by sequential execution of the BBN model. The method is demonstrated using a simple pedagogical example and subsequently applied to a groundwater contamination problem using an expert-knowledge BBN model. The BBN model in this application predicts the probability that reductive dechlorination of the contaminant trichlorethene (TCE) is occurring at a site - a critical step in the demonstration of the feasibility of monitored natural attenuation for site cleanup - given information on 14 measurable antecedent and descendant conditions. The predictions for the BBN models for 21 experts are weighted and aggregated using examples of hypothetical and actual site data. The method allows more weight for those expert models that are more reflective of the site conditions, and is shown to yield an aggregate prediction that differs from that of simple model averaging in a potentially significant manner. en
heal.publisher BLACKWELL PUBLISHERS en
heal.journalName Risk Analysis en
dc.identifier.doi 10.1111/j.0272-4332.2004.00547.x en
dc.identifier.isi ISI:000226235800011 en
dc.identifier.volume 24 en
dc.identifier.issue 6 en
dc.identifier.spage 1529 en
dc.identifier.epage 1538 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής