dc.contributor.author |
Chien, M-T |
en |
dc.contributor.author |
Nakazato, H |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T11:44:40Z |
|
dc.date.available |
2014-03-01T11:44:40Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0308-1087 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37083 |
|
dc.subject |
Boundary |
en |
dc.subject |
Connectedness |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Ellipse |
en |
dc.subject |
Local dimension |
en |
dc.subject |
Matrix polynomial |
en |
dc.subject |
q-numerical range |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY |
en |
dc.title |
On the q-numerical range of matrices and matrix polynomials |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1080/03081080500167596 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03081080500167596 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The q-numerical range (0 <= q <= 1) of an n x n matrix polynomial P(lambda) = A(m)lambda(m)+center dot center dot center dot+ A(1)lambda + A(0) is defined by W-q(P) = {lambda is an element of C: y*P(lambda)x = 0, x, y is an element of C-n, x*x = y* y = 1, y* x = q}. In this article, we investigate the boundary and the shape of W-q(P), using the notion of local dimension. We also obtain that the q-numerical range of first-order matrix polynomials is always simply connected. Moreover, the special cases of 2 x 2 matrices and matrix polynomials are considered. In particular, the boundary of the q-numerical range of a 2 x 2 matrix polynomial of degree m lies on an algebraic curve of degree at most 8m. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Linear and Multilinear Algebra |
en |
dc.identifier.doi |
10.1080/03081080500167596 |
en |
dc.identifier.isi |
ISI:000231535800004 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
357 |
en |
dc.identifier.epage |
374 |
en |