dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T11:44:41Z |
|
dc.date.available |
2014-03-01T11:44:41Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
1370-1444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37085 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-27644556339&partnerID=40&md5=eefacc75b7a1d8f4d646aa082481e2da |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Green's identity |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Method of upper and lower solutions |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Periodic solution |
en |
dc.subject |
Positive solution |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Pairs of solutions of constant sign for nonlinear periodic equations with unbounded nonlinearity |
en |
heal.type |
other |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We consider periodic problems driven by the ordinary scalar p-Laplacian with a Caratheodory nonlinearity. Using variational techniques, coupled with the method of upper and lower solutions, we obtain two nontrivial solutions, with one positive and the other negative. |
en |
heal.publisher |
BELGIAN MATHEMATICAL SOC TRIOMPHE |
en |
heal.journalName |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
en |
dc.identifier.isi |
ISI:000233120900003 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
193 |
en |
dc.identifier.epage |
208 |
en |