dc.contributor.author |
Kerschen, G |
en |
dc.contributor.author |
Golinval, J-C |
en |
dc.contributor.author |
Vakakis, AF |
en |
dc.contributor.author |
Bergman, LA |
en |
dc.date.accessioned |
2014-03-01T11:44:41Z |
|
dc.date.available |
2014-03-01T11:44:41Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0924-090X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37090 |
|
dc.subject |
Dynamic characterization |
en |
dc.subject |
Order reduction |
en |
dc.subject |
Proper orthogonal decomposition |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Modal analysis |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Covariance matrix |
en |
dc.subject.other |
Dynamic characterization |
en |
dc.subject.other |
Order reduction |
en |
dc.subject.other |
Proper orthogonal decomposition (POD) |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s11071-005-2803-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11071-005-2803-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Modal analysis is used extensively for understanding the dynamic behavior of structures. However, a major concern for structural dynamicists is that its validity is limited to linear structures. New developments have been proposed in order to examine nonlinear systems, among which the theory based on nonlinear normal modes is indubitably the most appealing. In this paper, a different approach is adopted, and proper orthogonal decomposition is considered. The modes extracted from the decomposition may serve two purposes, namely order reduction by projecting high-dimensional data into a lower-dimensional space and feature extraction by revealing relevant but unexpected structure hidden in the data. The utility of the method for dynamic characterization and order reduction of linear and nonlinear mechanical systems is demonstrated in this study. © Springer 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Nonlinear Dynamics |
en |
dc.identifier.doi |
10.1007/s11071-005-2803-2 |
en |
dc.identifier.isi |
ISI:000230267900007 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
147 |
en |
dc.identifier.epage |
169 |
en |