HEAL DSpace

Classification algorithms for microcalcifications in mammograms (Review).

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sakka, E en
dc.contributor.author Prentza, A en
dc.contributor.author Koutsouris, D en
dc.date.accessioned 2014-03-01T11:44:41Z
dc.date.available 2014-03-01T11:44:41Z
dc.date.issued 2006 en
dc.identifier.issn 1021-335X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/37095
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33645778548&partnerID=40&md5=8f94b224c62ae83d5d559efa7918de59 en
dc.subject microcalcifications en
dc.subject feature extraction en
dc.subject classification en
dc.subject ROC curve en
dc.subject.classification Oncology en
dc.subject.other algorithm en
dc.subject.other artificial neural network en
dc.subject.other automation en
dc.subject.other breast tumor en
dc.subject.other calcinosis en
dc.subject.other differential diagnosis en
dc.subject.other female en
dc.subject.other fuzzy logic en
dc.subject.other human en
dc.subject.other mammography en
dc.subject.other radiography en
dc.subject.other review en
dc.subject.other Algorithms en
dc.subject.other Automation en
dc.subject.other Breast Neoplasms en
dc.subject.other Calcinosis en
dc.subject.other Diagnosis, Differential en
dc.subject.other Female en
dc.subject.other Fuzzy Logic en
dc.subject.other Humans en
dc.subject.other Mammography en
dc.subject.other Neural Networks (Computer) en
dc.title Classification algorithms for microcalcifications in mammograms (Review). en
heal.type other en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Early detection is the key to improve breast cancer prognosis. The only proven effective method of breast cancer early detection is mammography. An early sign of 30-50% of breast cancer is the appearance of clusters of fine, granular microcalcifications and 60-80% of breast carcinomas reveal microcalcification clusters upon histological examination. The high correlation between the appearance of the microcalcification clusters and diseases, proves that computer aided diagnosis (CAD) systems for automated classification of microcalcification clusters will be very useful and helpful for breast cancer control. The fuzzy nature of microcalcification, the low contrast and the low ability of distinguishing them from their surroundings make automated characterization of them extremely difficult. In this study, we give an overview of the currently available literature on characterization of malignant and benign microcalcifications. We compare and evaluate some of the classification algorithms on microcalcifications in mammograms used in various CAD systems, which are separated into categories according to the method in use. Neural networks are used in applications where only a few decisions are required concerning an amount of data. The k-nearest neighbour classifier distinguishes unknown patterns based on the similarity to known samples and the decision tree approach is much simpler than neural networks and does not need extensive knowledge of the probability distribution of the features. en
heal.publisher PROFESSOR D A SPANDIDOS en
heal.journalName Oncology reports. en
dc.identifier.isi ISI:000236066000014 en
dc.identifier.volume 15 Spec no. en
dc.identifier.spage 1049 en
dc.identifier.epage 1055 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής