dc.contributor.author |
Fikioris, G |
en |
dc.date.accessioned |
2014-03-01T11:44:42Z |
|
dc.date.available |
2014-03-01T11:44:42Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37108 |
|
dc.subject |
Antenna theory |
en |
dc.subject |
Integration (mathematics) |
en |
dc.subject |
Mellin transforms |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Antenna area |
en |
dc.subject.other |
Antenna theory |
en |
dc.subject.other |
Closed-form expression |
en |
dc.subject.other |
Constant-current |
en |
dc.subject.other |
Definite integral |
en |
dc.subject.other |
Exact calculations |
en |
dc.subject.other |
First-principles |
en |
dc.subject.other |
Generalized hypergeometric functions |
en |
dc.subject.other |
Integral evaluation |
en |
dc.subject.other |
Mathematica |
en |
dc.subject.other |
Mellin transform |
en |
dc.subject.other |
Mellin-Barnes integrals |
en |
dc.subject.other |
Simple expression |
en |
dc.subject.other |
Standard antenna |
en |
dc.subject.other |
Step-by-step |
en |
dc.subject.other |
Antenna arrays |
en |
dc.subject.other |
Slot antennas |
en |
dc.subject.other |
Wavelet transforms |
en |
dc.subject.other |
Anisotropic media |
en |
dc.title |
Integral evaluation using the mellin transform and generalized hypergeometric functions: Tutorial and applications to antenna problems |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1109/TAP.2006.886579 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2006.886579 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This is a tutorial presentation of the Mellin-transform (MT) method for the exact calculation of one-dimensional definite integrals, and an illustration of the application of this method to antenna/electromagnetics problems. Once the basics have been mastered, one quickly realizes that the MT-method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the MT-method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. In fact, the MT-method is used by Mathematica to symbolically calculate definite integrals. The first part of this paper is a step-by-step tutorial, proceeding from first principles. It includes basic information on Mellin-Barnes integrals and generalized hypergeometric functions, and summarizes the key ideas of the MT-method. In the remaining parts, the MT-method is applied to three examples from the antenna area. The results here are believed to be new, at least in the antenna/electromagnetics literature. In our first example, we obtain a closed-form expression, as a generalized hypergeometric function, for the power radiated by a constant-current circular-loop antenna; this quantity has been extensively discussed recently. Our second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In our third example, finally, we obtain a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2006.886579 |
en |
dc.identifier.isi |
ISI:000242814800045 |
en |
dc.identifier.volume |
54 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
3895 |
en |
dc.identifier.epage |
3907 |
en |