dc.contributor.author |
Koutsoyiannis, D |
en |
dc.date.accessioned |
2014-03-01T11:44:44Z |
|
dc.date.available |
2014-03-01T11:44:44Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0262-6667 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37133 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Central Nervous System |
en |
dc.subject |
Complex System |
en |
dc.subject |
Evapotranspiration |
en |
dc.subject |
General Regression Neural Network |
en |
dc.subject |
Model Complexity |
en |
dc.subject |
Nonlinear Model |
en |
dc.subject |
Nonlinear System |
en |
dc.subject |
Optimal Method |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Water Resources |
en |
dc.title |
Discussion of ""generalized regression neural networks for evapotranspiration modelling"" |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1623/hysj.52.4.832 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1623/hysj.52.4.832 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
There is no doubt that so-called "artificial neural networks" (ANN) are powerful computational tools to model complex nonlinear systems. In my view, an ANN estab- lishes a data-driven nonlinear relationship between inputs and outputs of a system. The fact that such a nonlinear model is generally very complicated (usually one does not even write down the equations) renders it a |
en |
heal.publisher |
IAHS PRESS, INST HYDROLOGY |
en |
heal.journalName |
Hydrological Sciences Journal |
en |
dc.identifier.doi |
10.1623/hysj.52.4.832 |
en |
dc.identifier.isi |
ISI:000248730300018 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
832 |
en |
dc.identifier.epage |
835 |
en |