dc.contributor.author |
Theodorou, DN |
en |
dc.date.accessioned |
2014-03-01T11:44:45Z |
|
dc.date.available |
2014-03-01T11:44:45Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0009-2509 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37138 |
|
dc.subject |
Diffusion |
en |
dc.subject |
Mathematical modelling |
en |
dc.subject |
Nanostructure |
en |
dc.subject |
Polymers |
en |
dc.subject |
Rheology |
en |
dc.subject |
Simulation |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Adhesives |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Hierarchical systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Stress-strain curves |
en |
dc.subject.other |
Barrier properties |
en |
dc.subject.other |
Chemical engineers |
en |
dc.subject.other |
Molecular motion |
en |
dc.subject.other |
Topological analysis |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Adhesives |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Hierarchical systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Stress-strain curves |
en |
dc.title |
Hierarchical modelling of polymeric materials |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1016/j.ces.2007.04.048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ces.2007.04.048 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Within the last 20 years, computer simulations of materials have evolved from an academic curiosity to a predictive tool for addressing structure-property-processing-performance relations that are critical to the design of new products and processes. Chemical engineers, with their problem-oriented thinking and their systems approach, have played a significant role in this development. The computational prediction of physical properties is particularly challenging for polymeric materials, because of the extremely broad spectra of length and time scales governing structure and molecular motion in these materials. This challenge can only be met through the development of hierarchical analysis and simulation strategies encompassing many interconnected levels, each level addressing phenomena over a specific window of time and length scales. In this paper we will briefly discuss the fundamental underpinnings and example applications of new methods and algorithms for the hierarchical modelling of polymers. Questions to be addressed include: How can one equilibrate atomistic models of long-chain polymer melts at all length scales and thereby predict thermodynamic and conformational properties reliably? How can one quantify the structure of entanglement networks present in these melts through topological analysis and relate it to rheological properties? Are there ways to predict the microphase-separated morphology and stress-strain behaviour of multicomponent block copolymer-based materials, such as pressure sensitive adhesives? Is it possible to anticipate changes in the barrier properties of glassy amorphous polymers used in packaging applications as a consequence of modifications in the chemical constitution of chains? (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Chemical Engineering Science |
en |
dc.identifier.doi |
10.1016/j.ces.2007.04.048 |
en |
dc.identifier.isi |
ISI:000250670300001 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
21 |
en |
dc.identifier.spage |
5697 |
en |
dc.identifier.epage |
5714 |
en |