dc.contributor.author |
SIMOS, TE |
en |
dc.date.accessioned |
2014-03-01T11:45:30Z |
|
dc.date.available |
2014-03-01T11:45:30Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0377-0427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37461 |
|
dc.subject |
SCHRODINGER EQUATION |
en |
dc.subject |
RESONANCE PROBLEM |
en |
dc.subject |
PHASE-LAG |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION |
en |
heal.type |
other |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Two-step sixth-order methods with phase-lag of order eight, ten and twelve are developed for the numerical integration of the special second-order initial-value problem. An application to the one-dimensional Schrodinger equation on the resonance problem indicates that these new methods are generally more accurate than methods developed by Chawla, Rao and Neta (this journal, 1986, 1987). |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
en |
dc.identifier.isi |
ISI:A1992HJ34600009 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
89 |
en |
dc.identifier.epage |
94 |
en |