HEAL DSpace

Computational rheology with integral constitutive equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T11:45:42Z
dc.date.available 2014-03-01T11:45:42Z
dc.date.issued 1999 en
dc.identifier.issn 14306395 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/37572
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0033398662&partnerID=40&md5=0e668e5a2f2d1e3bcbd49c0310ba9b73 en
dc.subject Computational rheology en
dc.subject Integral constitutive equations en
dc.subject Viscoelasticity en
dc.subject.other computational fluid dynamics en
dc.subject.other drag coefficient en
dc.subject.other finite element analysis en
dc.subject.other polymer en
dc.subject.other rheology en
dc.subject.other streamline (flow) en
dc.subject.other viscoelasticity en
dc.subject.other vortex en
dc.title Computational rheology with integral constitutive equations en
heal.type other en
heal.publicationDate 1999 en
heal.abstract Computational rheology deals with the formulation and solution of constitutive equations for non-Newtonian materials. From these the emphasis is put on polymeric materials, which exhibit both viscous and elastic behaviour in flow and deformation. These materials are often called viscoelastic materials. Polymer solutions and melts (e.g. commercial plastics and rubber) are good examples of viscoelastic materials. Their processing under continuous (e.g. extrusion) or batch (e.g. injection molding) operations is the main occupation of the plastics and rubber industries, but the corresponding modelling and numerical simulation is a difficult task and a relatively recent undertaking. The present work reviews modelling aspects of viscoelasticity and shows how the complex rheology of these materials is best captured through integral constitutive equations with a spectrum of relaxation times. Using such constitutive equations and the Finite Element Method (FEM), the solution of some benchmark problems of rheology becomes feasible. Examples will be shown from the flow of polymer melts and solutions in a 4:1 axisymmetric contraction encountered in standard capillary rheometry, as well as the flow around a sphere falling in a cylindrical tube. The emphasis will be on demonstrating the flow patterns via streamlines and predicting such viscoelastic phenomena as vortex growth, extrudate swell, and reduction of the drag coefficient, which are of particular interest to the rheological community as test cases of computational results. en
heal.journalName Applied Rheology en
dc.identifier.volume 9 en
dc.identifier.issue 5 en
dc.identifier.spage 198 en
dc.identifier.epage 203 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής