Regions of a satellite's motion in a Maxwell's ring system of N bodies

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Croustalloudi, MN en
dc.contributor.author Kalvouridis, TJ en
dc.date.accessioned 2014-03-01T11:46:25Z
dc.date.available 2014-03-01T11:46:25Z
dc.date.issued 2010 en
dc.identifier.issn 0004640X en
dc.identifier.uri http://hdl.handle.net/123456789/37893
dc.subject Regular polygon problem of (N+1) bodies en
dc.subject Ring problem of (N+1) bodies en
dc.subject Trapping regions of motion en
dc.subject Zero velocity surfaces en
dc.title Regions of a satellite's motion in a Maxwell's ring system of N bodies en
heal.type other en
heal.identifier.primary 10.1007/s10509-010-0462-3 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10509-010-0462-3 en
heal.publicationDate 2010 en
heal.abstract The study of a dynamical system comprises a variety of processes, each one of which requires careful analysis. A fundamental preliminary step is to detect and limit the regions where solutions may exist. In the case of the ring problem of (N+1)-bodies or, otherwise, the regular polygon problem of (N+1) bodies, the existence of a Jacobian-type integral of motion constitutes the key for the investigation of the areas where the motions of the small particle are realized. Based on the aforementioned integral, we present an extended study of the parametric evolution of the regions where 3-D particle motions may exist. © 2010 Springer Science+Business Media B.V. en
heal.journalName Astrophysics and Space Science en
dc.identifier.doi 10.1007/s10509-010-0462-3 en
dc.identifier.spage 1 en
dc.identifier.epage 14 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record