HEAL DSpace

An information theoretical algorithm for analyzing supersaturated designs for a binary response

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Balakrishnan, N en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Parpoula, C en
dc.date.accessioned 2014-03-01T11:46:27Z
dc.date.available 2014-03-01T11:46:27Z
dc.date.issued 2011 en
dc.identifier.issn 00261335 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/37925
dc.subject Entropy en
dc.subject Error rates en
dc.subject Factor screening en
dc.subject Generalized linear models en
dc.subject Information gain en
dc.subject ROC en
dc.subject Symmetrical uncertainty en
dc.title An information theoretical algorithm for analyzing supersaturated designs for a binary response en
heal.type other en
heal.identifier.primary 10.1007/s00184-011-0373-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00184-011-0373-5 en
heal.publicationDate 2011 en
heal.abstract A supersaturated design is a factorial design in which the number of effects to be estimated is greater than the number of runs. It is used in many experiments, for screening purpose, i.e., for studying a large number of factors and identifying the active ones. In this paper, we propose a method for screening out the important factors from a large set of potentially active variables through the symmetrical uncertainty measure combined with the information gain measure. We develop an information theoretical analysis method by using Shannon and some other entropy measures such as Rényi entropy, Havrda-Charvát entropy, and Tsallis entropy, on data and assuming generalized linear models for a Bernoulli response. This method is quite advantageous as it enables us to use supersaturated designs for analyzing data on generalized linear models. Empirical study demonstrates that this method performs well giving low Type I and Type II error rates for any entropy measure we use. Moreover, the proposed method is more efficient when compared to the existing ROC methodology of identifying the significant factors for a dichotomous response in terms of error rates. © 2011 Springer-Verlag. en
heal.journalName Metrika en
dc.identifier.doi 10.1007/s00184-011-0373-5 en
dc.identifier.spage 1 en
dc.identifier.epage 18 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής