dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T11:46:29Z |
|
dc.date.available |
2014-03-01T11:46:29Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03733114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37944 |
|
dc.subject |
C-condition |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Indefinite potential |
en |
dc.subject |
Morse relation |
en |
dc.subject |
Mountainpass type critical point |
en |
dc.subject |
Superlinear reaction |
en |
dc.subject |
Three solutions |
en |
dc.title |
Multiple solutions for superlinear Dirichlet problems with an indefinite potential |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s10231-011-0224-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10231-011-0224-z |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We consider a semilinear elliptic equation with an indefinite unbounded potential and a Carathéodory reaction term that exhibits superlinear growth near ±∞ without satisfying the AR-condition. Also, at the origin, the primitive of the reaction satisfies a nonuniform nonresonance condition with respect to the first eigenvalue of {Mathematical expression} . Using critical point theory and Morse theory, we show that the problem has at least three nontrivial smooth solutions. Our result extends that of Wang (Anal Nonlineaire 8:43-58, 1991). © 2011 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag. |
en |
heal.journalName |
Annali di Matematica Pura ed Applicata |
en |
dc.identifier.doi |
10.1007/s10231-011-0224-z |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
19 |
en |