HEAL DSpace

The free (open) boundary condition (FBC) in viscoelastic flow simulations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.contributor.author Malamataris, NA en
dc.date.accessioned 2014-03-01T11:46:35Z
dc.date.available 2014-03-01T11:46:35Z
dc.date.issued 2011 en
dc.identifier.issn 19606206 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/37955
dc.subject CEF model en
dc.subject Free (open) boundary condition en
dc.subject Newtonian fluid en
dc.subject Non-isothermal flows en
dc.subject Second-order fluid en
dc.subject Viscoelastic flows en
dc.title The free (open) boundary condition (FBC) in viscoelastic flow simulations en
heal.type other en
heal.identifier.primary 10.1007/s12289-011-1071-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s12289-011-1071-6 en
heal.publicationDate 2011 en
heal.abstract The Free (or Open) Boundary Condition (FBC, OBC) was proposed by Papanastasiou et al. (A New Outflow Boundary Condition, Int. J. Numer. Meth. Fluids, 1992; 14:587-608) to handle truncated domains with synthetic boundaries where the outflow conditions are unknown. In the present work, implementation of the FBC has been extended to viscoelastic fluids governed by explicit differential constitutive equations. As such we consider here the Criminale-Ericksen-Filbey (CEF) model, which also reduces to the Second-Order Fluid (SOF) for constant material parameters. The Finite Element Method (FEM) is used to provide numerical results in simple Poiseuille flow where analytical solutions exist for checking purposes. Then previous numerical results are checked against Newtonian highly non-isothermal flows in a 4:1 contraction. Finally, the FBC is used with the CEF fluid with data corresponding to a Boger fluid of constant material properties. Particular emphasis is based on a non-zero second normal-stress difference, which seems responsible for earlier loss of convergence. The results with the FBC are in excellent agreement with those obtained from long domains, due to the highly convective nature of viscoelastic flows, for which the FBC seems most appropriate. The FBC formulation for fixed-point (Picard-type) iterations is given in some detail, and the differences with the Newton-Raphson formulation are highlighted regarding some computational aspects. © 2011 Springer-Verlag France. en
heal.journalName International Journal of Material Forming en
dc.identifier.doi 10.1007/s12289-011-1071-6 en
dc.identifier.spage 1 en
dc.identifier.epage 15 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής