dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T11:46:38Z |
|
dc.date.available |
2014-03-01T11:46:38Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09255001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37989 |
|
dc.subject |
Concave and convex terms |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Maximum principle |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Positive solutions |
en |
dc.subject |
Variable exponent |
en |
dc.title |
A pair of positive solutions for the Dirichlet p(z)-Laplacian with concave and convex nonlinearities |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s10898-011-9841-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10898-011-9841-8 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear parametric Dirichlet problem driven by the anisotropic p-Laplacian with the combined effects of ""concave"" and ""convex"" terms. The ""superlinear"" nonlinearity need not satisfy the Ambrosetti-Rabinowitz condition. Using variational methods based on the critical point theory and the Ekeland variational principle, we show that for small values of the parameter, the problem has at least two nontrivial smooth positive solutions. © 2012 The Author(s). |
en |
heal.journalName |
Journal of Global Optimization |
en |
dc.identifier.doi |
10.1007/s10898-011-9841-8 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
14 |
en |