dc.contributor.author |
Tyralis, H |
en |
dc.contributor.author |
Koutsoyiannis, D |
en |
dc.contributor.author |
Kozanis, S |
en |
dc.date.accessioned |
2014-03-01T11:46:39Z |
|
dc.date.available |
2014-03-01T11:46:39Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09434062 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37997 |
|
dc.subject |
Confidence interval |
en |
dc.subject |
Hydrological statistics |
en |
dc.subject |
Location-scale family |
en |
dc.subject |
Maximum likelihood |
en |
dc.subject |
Monte Carlo |
en |
dc.title |
An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s00180-012-0364-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00180-012-0364-7 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We derive a new algorithm for calculating an exact confidence interval for a parameter of location or scale family, based on a two-sided hypothesis test on the parameter of interest, using some pivotal quantities. We use this algorithm to calculate approximate confidence intervals for the parameter or a function of the parameter of one-parameter continuous distributions. After appropriate heuristic modifications of the algorithm we use it to obtain approximate confidence intervals for a parameter or a function of parameters for multi-parameter continuous distributions. The advantage of the algorithm is that it is general and gives a fast approximation of an exact confidence interval. Some asymptotic (analytical) results are shown which validate the use of the method under certain regularity conditions. In addition, numerical results of the method compare well with those obtained by other known methods of the literature on the exponential, the normal, the gamma and the Weibull distribution. © 2012 Springer-Verlag. |
en |
heal.journalName |
Computational Statistics |
en |
dc.identifier.doi |
10.1007/s00180-012-0364-7 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
27 |
en |