dc.contributor.author |
Spathis, G |
en |
dc.contributor.author |
Kontou, E |
en |
dc.date.accessioned |
2014-03-01T11:46:41Z |
|
dc.date.available |
2014-03-01T11:46:41Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02663538 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/38021 |
|
dc.subject |
A. Polymer-matrix composites (PMCs) |
en |
dc.subject |
A. Polymers |
en |
dc.subject |
B. Creep |
en |
dc.subject |
C. Failure criterion |
en |
dc.subject.other |
Accumulated strain |
en |
dc.subject.other |
Creep failure time |
en |
dc.subject.other |
Creep rates |
en |
dc.subject.other |
Creep ruptures |
en |
dc.subject.other |
Creep strain |
en |
dc.subject.other |
Failure criteria |
en |
dc.subject.other |
Minimum value |
en |
dc.subject.other |
Model parameters |
en |
dc.subject.other |
Polymer composite |
en |
dc.subject.other |
Polymermatrix composites (PMCs) |
en |
dc.subject.other |
Rate process |
en |
dc.subject.other |
Small strains |
en |
dc.subject.other |
Specific time |
en |
dc.subject.other |
Stress levels |
en |
dc.subject.other |
Theoretical approach |
en |
dc.subject.other |
Thermally activated |
en |
dc.subject.other |
Viscoplastic |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
Creep |
en |
dc.subject.other |
Creep testing |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Polymer matrix composites |
en |
dc.subject.other |
Quantum chemistry |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Polymers |
en |
dc.title |
Creep failure time prediction of polymers and polymer composites |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1016/j.compscitech.2012.03.018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compscitech.2012.03.018 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined. © 2012 Elsevier Ltd. |
en |
heal.journalName |
Composites Science and Technology |
en |
dc.identifier.doi |
10.1016/j.compscitech.2012.03.018 |
en |
dc.identifier.volume |
72 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
959 |
en |
dc.identifier.epage |
964 |
en |