HEAL DSpace

Dynamic, behavioral-based estimation of resource provisioning based on high-level application terms in Cloud platforms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kousiouris, G en
dc.contributor.author Menychtas, A en
dc.contributor.author Kyriazis, D en
dc.contributor.author Gogouvitis, S en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T11:46:47Z
dc.date.available 2014-03-01T11:46:47Z
dc.date.issued 2012 en
dc.identifier.issn 0167739X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/38030
dc.subject Artificial neural networks en
dc.subject Cloud computing en
dc.subject Performance estimation en
dc.subject SLA translation en
dc.subject Workload prediction en
dc.title Dynamic, behavioral-based estimation of resource provisioning based on high-level application terms in Cloud platforms en
heal.type other en
heal.identifier.primary 10.1016/j.future.2012.05.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.future.2012.05.009 en
heal.publicationDate 2012 en
heal.abstract Delivering Internet-scale services and IT-enabled capabilities as computing utilities has been made feasible through the emergence of Cloud environments. While current approaches address a number of challenges such as quality of service, live migration and fault tolerance, which is of increasing importance, refers to the embedding of users' and applications' behaviour in the management processes of Clouds. The latter will allow for accurate estimation of the resource provision (for certain levels of service quality) with respect to the anticipated users' and applications' requirements. In this paper we present a two-level generic black-box approach for behavioral-based management across the Cloud layers (i.e., Software, Platform, Infrastructure): it provides estimates for resource attributes at a low level by analyzing information at a high level related to application terms (Translation level) while it predicts the anticipated user behaviour (Behavioral level). Patterns in high-level information are identified through a time series analysis, and are afterwards translated to low-level resource attributes with the use of Artificial Neural Networks. We demonstrate the added value and effectiveness of the Translation level through different application scenarios: namely FFMPEG encoding, real-time interactive e-Learning and a Wikipedia-type server. For the latter, we also validate the combined level model through a trace-driven simulation for identifying the overall error of the two-level approach. © 2012 Elsevier B.V. All rights reserved. en
heal.journalName Future Generation Computer Systems en
dc.identifier.doi 10.1016/j.future.2012.05.009 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής