heal.abstract |
The change in the total potential energy in a stressed elastic plane system, consisting of an unbounded matrix containing a cylindrical inhomogeneity of circular cross-section, is studied, when an imperfect bonding is formed across the interface. The imperfect bonding is simulated by linearly elastic springs distributed over the interface. Two loading cases are examined: an equilibrium system of fixed uniform tractions acting in the remote boundary of the matrix, and a phase transformation in the inhomogeneity prescribed by stress free uniform eigenstrains distributed in the inhomogeneity region. For both loadings, the fully elastic fields in explicit forms are derived involving the spring compliances and three new two-phase parameters depending on the elastic properties of the two materials. The elastic energies stored in the whole system and in its constituents are determined in simple and compact forms. It is shown that, in both loading cases, the total potential energy of the system is reduced. It is found that, in nanoscale, the ratio of the elastic energy stored in interface to the elastic energy stored in inhomogeneity increases rapidly for small values of the circular radius and tends to zero for large values. Also, this ratio increases as the matrix becomes softer compared to the inhomogeneity. © 2012 Springer Science+Business Media B.V. |
en |